Basic invariants
Dimension: | $1$ |
Group: | $C_6$ |
Conductor: | \(52\)\(\medspace = 2^{2} \cdot 13 \) |
Artin field: | Galois closure of 6.0.1827904.1 |
Galois orbit size: | $2$ |
Smallest permutation container: | $C_6$ |
Parity: | odd |
Dirichlet character: | \(\chi_{52}(3,\cdot)\) |
Projective image: | $C_1$ |
Projective field: | Galois closure of \(\Q\) |
Defining polynomial
$f(x)$ | $=$ |
\( x^{6} + 9x^{4} + 14x^{2} + 1 \)
|
The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$:
\( x^{2} + 29x + 3 \)
Roots:
$r_{ 1 }$ | $=$ |
\( 24 a + 7 + \left(2 a + 9\right)\cdot 31 + \left(17 a + 15\right)\cdot 31^{2} + \left(30 a + 24\right)\cdot 31^{3} + \left(3 a + 26\right)\cdot 31^{4} +O(31^{5})\)
$r_{ 2 }$ |
$=$ |
\( 5 a + 26 + \left(18 a + 30\right)\cdot 31 + \left(3 a + 20\right)\cdot 31^{2} + \left(18 a + 14\right)\cdot 31^{3} + 8\cdot 31^{4} +O(31^{5})\)
| $r_{ 3 }$ |
$=$ |
\( 15 a + 16 + \left(18 a + 4\right)\cdot 31 + \left(22 a + 2\right)\cdot 31^{2} + \left(11 a + 15\right)\cdot 31^{3} + \left(13 a + 23\right)\cdot 31^{4} +O(31^{5})\)
| $r_{ 4 }$ |
$=$ |
\( 7 a + 24 + \left(28 a + 21\right)\cdot 31 + \left(13 a + 15\right)\cdot 31^{2} + 6\cdot 31^{3} + \left(27 a + 4\right)\cdot 31^{4} +O(31^{5})\)
| $r_{ 5 }$ |
$=$ |
\( 26 a + 5 + 12 a\cdot 31 + \left(27 a + 10\right)\cdot 31^{2} + \left(12 a + 16\right)\cdot 31^{3} + \left(30 a + 22\right)\cdot 31^{4} +O(31^{5})\)
| $r_{ 6 }$ |
$=$ |
\( 16 a + 15 + \left(12 a + 26\right)\cdot 31 + \left(8 a + 28\right)\cdot 31^{2} + \left(19 a + 15\right)\cdot 31^{3} + \left(17 a + 7\right)\cdot 31^{4} +O(31^{5})\)
| |
Generators of the action on the roots $r_1, \ldots, r_{ 6 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 6 }$ | Character value |
$1$ | $1$ | $()$ | $1$ |
$1$ | $2$ | $(1,4)(2,5)(3,6)$ | $-1$ |
$1$ | $3$ | $(1,5,6)(2,3,4)$ | $\zeta_{3}$ |
$1$ | $3$ | $(1,6,5)(2,4,3)$ | $-\zeta_{3} - 1$ |
$1$ | $6$ | $(1,3,5,4,6,2)$ | $\zeta_{3} + 1$ |
$1$ | $6$ | $(1,2,6,4,5,3)$ | $-\zeta_{3}$ |
The blue line marks the conjugacy class containing complex conjugation.