Properties

Label 1.473.6t1.b.a
Dimension $1$
Group $C_6$
Conductor $473$
Root number not computed
Indicator $0$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $1$
Group: $C_6$
Conductor: \(473\)\(\medspace = 11 \cdot 43 \)
Artin field: Galois closure of 6.0.4550424131.1
Galois orbit size: $2$
Smallest permutation container: $C_6$
Parity: odd
Dirichlet character: \(\chi_{473}(208,\cdot)\)
Projective image: $C_1$
Projective field: Galois closure of \(\Q\)

Defining polynomial

$f(x)$$=$ \( x^{6} - x^{5} - 20x^{4} + 39x^{3} + 212x^{2} - 649x + 1067 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 5.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: \( x^{2} + 38x + 6 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 30 a + 40 + \left(15 a + 21\right)\cdot 41 + \left(31 a + 15\right)\cdot 41^{2} + \left(20 a + 1\right)\cdot 41^{3} + \left(8 a + 2\right)\cdot 41^{4} +O(41^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 30 a + 1 + \left(15 a + 6\right)\cdot 41 + \left(31 a + 16\right)\cdot 41^{2} + \left(20 a + 12\right)\cdot 41^{3} + \left(8 a + 24\right)\cdot 41^{4} +O(41^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 30 a + 9 + \left(15 a + 28\right)\cdot 41 + \left(31 a + 14\right)\cdot 41^{2} + \left(20 a + 1\right)\cdot 41^{3} + \left(8 a + 28\right)\cdot 41^{4} +O(41^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 11 a + 17 + \left(25 a + 4\right)\cdot 41 + \left(9 a + 11\right)\cdot 41^{2} + \left(20 a + 32\right)\cdot 41^{3} + \left(32 a + 32\right)\cdot 41^{4} +O(41^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 11 a + 7 + \left(25 a + 39\right)\cdot 41 + \left(9 a + 11\right)\cdot 41^{2} + \left(20 a + 32\right)\cdot 41^{3} + \left(32 a + 6\right)\cdot 41^{4} +O(41^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 11 a + 9 + \left(25 a + 23\right)\cdot 41 + \left(9 a + 12\right)\cdot 41^{2} + \left(20 a + 2\right)\cdot 41^{3} + \left(32 a + 29\right)\cdot 41^{4} +O(41^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,5)(2,6)(3,4)$
$(1,2,3)(4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character valueComplex conjugation
$1$$1$$()$$1$
$1$$2$$(1,5)(2,6)(3,4)$$-1$
$1$$3$$(1,2,3)(4,5,6)$$\zeta_{3}$
$1$$3$$(1,3,2)(4,6,5)$$-\zeta_{3} - 1$
$1$$6$$(1,6,3,5,2,4)$$-\zeta_{3}$
$1$$6$$(1,4,2,5,3,6)$$\zeta_{3} + 1$