Properties

Label 1.461.5t1.1c1
Dimension 1
Group $C_5$
Conductor $ 461 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_5$
Conductor:$461 $
Artin number field: Splitting field of $f= x^{5} - x^{4} - 184 x^{3} + 129 x^{2} + 4551 x - 5419 $ over $\Q$
Size of Galois orbit: 4
Smallest containing permutation representation: $C_5$
Parity: Even
Corresponding Dirichlet character: \(\chi_{461}(114,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 13 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 1 + 12\cdot 13 + 8\cdot 13^{2} + 9\cdot 13^{3} + 10\cdot 13^{4} + 7\cdot 13^{5} +O\left(13^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 2 + 11\cdot 13 + 7\cdot 13^{2} + 11\cdot 13^{4} + 5\cdot 13^{5} +O\left(13^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 3 + 6\cdot 13 + 7\cdot 13^{2} + 5\cdot 13^{3} + 6\cdot 13^{4} + 4\cdot 13^{5} +O\left(13^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 9 + 7\cdot 13^{2} + 12\cdot 13^{3} + 3\cdot 13^{4} + 2\cdot 13^{5} +O\left(13^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 12 + 8\cdot 13 + 7\cdot 13^{2} + 10\cdot 13^{3} + 6\cdot 13^{4} + 5\cdot 13^{5} +O\left(13^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,3,5,2,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$1$
$1$$5$$(1,3,5,2,4)$$\zeta_{5}$
$1$$5$$(1,5,4,3,2)$$\zeta_{5}^{2}$
$1$$5$$(1,2,3,4,5)$$\zeta_{5}^{3}$
$1$$5$$(1,4,2,5,3)$$-\zeta_{5}^{3} - \zeta_{5}^{2} - \zeta_{5} - 1$
The blue line marks the conjugacy class containing complex conjugation.