Basic invariants
Dimension: | $1$ |
Group: | $C_{12}$ |
Conductor: | \(45\)\(\medspace = 3^{2} \cdot 5 \) |
Artin field: | Galois closure of \(\Q(\zeta_{45})^+\) |
Galois orbit size: | $4$ |
Smallest permutation container: | $C_{12}$ |
Parity: | even |
Dirichlet character: | \(\chi_{45}(38,\cdot)\) |
Projective image: | $C_1$ |
Projective field: | Galois closure of \(\Q\) |
Defining polynomial
$f(x)$ | $=$ | \( x^{12} - 12x^{10} - x^{9} + 54x^{8} + 9x^{7} - 112x^{6} - 27x^{5} + 105x^{4} + 31x^{3} - 36x^{2} - 12x + 1 \) . |
The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: \( x^{4} + 7x^{2} + 10x + 3 \)
Roots:
$r_{ 1 }$ | $=$ | \( 14 a^{3} + 3 a^{2} + 2 a + 16 + \left(9 a^{3} + 4 a^{2} + 16 a + 14\right)\cdot 17 + \left(9 a^{3} + 3 a^{2} + 10 a + 3\right)\cdot 17^{2} + \left(11 a^{3} + 16 a^{2} + 5 a + 5\right)\cdot 17^{3} + \left(6 a^{3} + 12 a^{2} + a + 5\right)\cdot 17^{4} +O(17^{5})\) |
$r_{ 2 }$ | $=$ | \( 8 a^{3} + 11 a^{2} + 7 a + 6 + \left(6 a^{3} + 16 a^{2} + 8 a + 11\right)\cdot 17 + \left(a^{2} + 5 a + 4\right)\cdot 17^{2} + \left(11 a^{3} + 14 a^{2} + 9 a + 7\right)\cdot 17^{3} + \left(14 a^{3} + 3 a^{2} + 4 a + 12\right)\cdot 17^{4} +O(17^{5})\) |
$r_{ 3 }$ | $=$ | \( 7 a^{3} + 6 a^{2} + 13 a + 8 + \left(13 a^{2} + 11 a + 10\right)\cdot 17 + \left(14 a^{3} + 4 a^{2} + 8 a + 8\right)\cdot 17^{2} + \left(12 a^{3} + 14 a^{2} + 5 a + 16\right)\cdot 17^{3} + \left(6 a^{3} + 11 a^{2} + a + 1\right)\cdot 17^{4} +O(17^{5})\) |
$r_{ 4 }$ | $=$ | \( 4 a^{3} + 16 a^{2} + 13 a + 12 + \left(5 a^{3} + 3 a^{2} + 16 a + 13\right)\cdot 17 + \left(9 a^{3} + a^{2} + 3 a + 11\right)\cdot 17^{2} + \left(9 a^{3} + 4 a^{2} + 14 a + 15\right)\cdot 17^{3} + \left(15 a^{3} + 10 a^{2} + 5 a + 2\right)\cdot 17^{4} +O(17^{5})\) |
$r_{ 5 }$ | $=$ | \( 14 a^{3} + 14 a^{2} + 16 a + 6 + \left(4 a^{3} + 13 a^{2} + 11 a + 15\right)\cdot 17 + \left(a^{3} + 2 a^{2} + 10 a + 1\right)\cdot 17^{2} + \left(4 a^{3} + 12 a^{2} + 10 a + 13\right)\cdot 17^{3} + \left(11 a^{3} + a^{2} + 10\right)\cdot 17^{4} +O(17^{5})\) |
$r_{ 6 }$ | $=$ | \( 6 a^{3} + 16 a + 12 + \left(2 a^{3} + 16 a^{2} + 5 a + 3\right)\cdot 17 + \left(6 a^{3} + 10 a^{2} + 12 a + 11\right)\cdot 17^{2} + \left(a^{3} + 5 a^{2} + 15\right)\cdot 17^{3} + \left(16 a^{3} + 2 a^{2} + 15 a\right)\cdot 17^{4} +O(17^{5})\) |
$r_{ 7 }$ | $=$ | \( 3 a^{3} + a^{2} + 13 a + 10 + \left(13 a^{3} + 6 a^{2} + 8 a + 7\right)\cdot 17 + \left(11 a^{3} + 2 a^{2} + 6\right)\cdot 17^{2} + \left(7 a^{3} + 3 a^{2} + 13 a + 3\right)\cdot 17^{3} + \left(3 a^{3} + 3 a^{2} + 15 a + 11\right)\cdot 17^{4} +O(17^{5})\) |
$r_{ 8 }$ | $=$ | \( 10 a^{3} + 6 a^{2} + 6 a + 16 + \left(4 a^{3} + 8 a^{2} + 11 a + 2\right)\cdot 17 + \left(4 a^{3} + 10 a^{2} + 9 a\right)\cdot 17^{2} + \left(7 a^{3} + 8 a^{2} + 16\right)\cdot 17^{3} + \left(10 a^{3} + 14 a^{2} + 6\right)\cdot 17^{4} +O(17^{5})\) |
$r_{ 9 }$ | $=$ | \( 5 a^{3} + 7 a^{2} + 14 a + 16 + \left(5 a^{3} + 13 a^{2} + 8 a + 8\right)\cdot 17 + \left(7 a^{3} + 13 a^{2} + 7 a\right)\cdot 17^{2} + \left(13 a^{3} + 15 a^{2} + 10 a + 11\right)\cdot 17^{3} + \left(3 a^{3} + 2 a^{2} + 6 a + 1\right)\cdot 17^{4} +O(17^{5})\) |
$r_{ 10 }$ | $=$ | \( 9 a^{3} + 9 a^{2} + 6 a + 8 + \left(a^{3} + 12 a^{2} + 6 a + 7\right)\cdot 17 + \left(a^{3} + 7 a^{2} + 10 a + 15\right)\cdot 17^{2} + \left(16 a^{2} + 8 a + 4\right)\cdot 17^{3} + \left(5 a^{3} + 15 a^{2} + 8 a + 3\right)\cdot 17^{4} +O(17^{5})\) |
$r_{ 11 }$ | $=$ | \( 5 a^{3} + 7 a^{2} + 15 a + 16 + \left(2 a^{3} + 15 a^{2} + a + 1\right)\cdot 17 + \left(4 a^{3} + 6 a^{2} + 6 a + 12\right)\cdot 17^{2} + \left(9 a^{3} + 14 a^{2} + 12 a + 8\right)\cdot 17^{3} + \left(8 a^{3} + 14 a^{2} + 9 a + 2\right)\cdot 17^{4} +O(17^{5})\) |
$r_{ 12 }$ | $=$ | \( 5 a^{2} + 15 a + 10 + \left(12 a^{3} + 12 a^{2} + 10 a + 3\right)\cdot 17 + \left(15 a^{3} + a^{2} + 15 a + 8\right)\cdot 17^{2} + \left(13 a^{3} + 11 a^{2} + 10 a + 1\right)\cdot 17^{3} + \left(16 a^{3} + 7 a^{2} + 15 a + 8\right)\cdot 17^{4} +O(17^{5})\) |
Generators of the action on the roots $r_1, \ldots, r_{ 12 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 12 }$ | Character value |
$1$ | $1$ | $()$ | $1$ |
$1$ | $2$ | $(1,4)(2,6)(3,10)(5,9)(7,12)(8,11)$ | $-1$ |
$1$ | $3$ | $(1,5,6)(2,4,9)(3,8,12)(7,10,11)$ | $\zeta_{12}^{2} - 1$ |
$1$ | $3$ | $(1,6,5)(2,9,4)(3,12,8)(7,11,10)$ | $-\zeta_{12}^{2}$ |
$1$ | $4$ | $(1,10,4,3)(2,12,6,7)(5,11,9,8)$ | $\zeta_{12}^{3}$ |
$1$ | $4$ | $(1,3,4,10)(2,7,6,12)(5,8,9,11)$ | $-\zeta_{12}^{3}$ |
$1$ | $6$ | $(1,2,5,4,6,9)(3,7,8,10,12,11)$ | $\zeta_{12}^{2}$ |
$1$ | $6$ | $(1,9,6,4,5,2)(3,11,12,10,8,7)$ | $-\zeta_{12}^{2} + 1$ |
$1$ | $12$ | $(1,8,2,10,5,12,4,11,6,3,9,7)$ | $\zeta_{12}$ |
$1$ | $12$ | $(1,12,9,10,6,8,4,7,5,3,2,11)$ | $\zeta_{12}^{3} - \zeta_{12}$ |
$1$ | $12$ | $(1,11,2,3,5,7,4,8,6,10,9,12)$ | $-\zeta_{12}$ |
$1$ | $12$ | $(1,7,9,3,6,11,4,12,5,10,2,8)$ | $-\zeta_{12}^{3} + \zeta_{12}$ |
The blue line marks the conjugacy class containing complex conjugation.