Properties

Label 1.431.5t1.1c3
Dimension 1
Group $C_5$
Conductor $ 431 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_5$
Conductor:$431 $
Artin number field: Splitting field of $f= x^{5} - x^{4} - 172 x^{3} + 724 x^{2} + 1824 x - 1728 $ over $\Q$
Size of Galois orbit: 4
Smallest containing permutation representation: $C_5$
Parity: Even
Corresponding Dirichlet character: \(\chi_{431}(116,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 47 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 17 + 30\cdot 47 + 27\cdot 47^{2} + 15\cdot 47^{3} + 18\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 24 + 33\cdot 47 + 42\cdot 47^{2} + 12\cdot 47^{3} + 13\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 27 + 40\cdot 47 + 13\cdot 47^{2} + 23\cdot 47^{3} + 28\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 35 + 25\cdot 47 + 26\cdot 47^{2} + 36\cdot 47^{3} + 34\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 39 + 10\cdot 47 + 30\cdot 47^{2} + 5\cdot 47^{3} + 46\cdot 47^{4} +O\left(47^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2,4,3,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$1$
$1$$5$$(1,2,4,3,5)$$\zeta_{5}^{3}$
$1$$5$$(1,4,5,2,3)$$\zeta_{5}$
$1$$5$$(1,3,2,5,4)$$-\zeta_{5}^{3} - \zeta_{5}^{2} - \zeta_{5} - 1$
$1$$5$$(1,5,3,4,2)$$\zeta_{5}^{2}$
The blue line marks the conjugacy class containing complex conjugation.