Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 47 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 17 + 30\cdot 47 + 27\cdot 47^{2} + 15\cdot 47^{3} + 18\cdot 47^{4} +O\left(47^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 24 + 33\cdot 47 + 42\cdot 47^{2} + 12\cdot 47^{3} + 13\cdot 47^{4} +O\left(47^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 27 + 40\cdot 47 + 13\cdot 47^{2} + 23\cdot 47^{3} + 28\cdot 47^{4} +O\left(47^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 35 + 25\cdot 47 + 26\cdot 47^{2} + 36\cdot 47^{3} + 34\cdot 47^{4} +O\left(47^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 39 + 10\cdot 47 + 30\cdot 47^{2} + 5\cdot 47^{3} + 46\cdot 47^{4} +O\left(47^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 5 }$
| Cycle notation |
| $(1,2,4,3,5)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 5 }$
| Character value |
| $1$ | $1$ | $()$ | $1$ |
| $1$ | $5$ | $(1,2,4,3,5)$ | $\zeta_{5}^{2}$ |
| $1$ | $5$ | $(1,4,5,2,3)$ | $-\zeta_{5}^{3} - \zeta_{5}^{2} - \zeta_{5} - 1$ |
| $1$ | $5$ | $(1,3,2,5,4)$ | $\zeta_{5}$ |
| $1$ | $5$ | $(1,5,3,4,2)$ | $\zeta_{5}^{3}$ |
The blue line marks the conjugacy class containing complex conjugation.