Properties

Label 1.43.6t1.1
Dimension 1
Group $C_6$
Conductor $ 43 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_6$
Conductor:$43 $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 4 x^{4} + 23 x^{3} + 67 x^{2} + 50 x + 44 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_6$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 113 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 113 }$: $ x^{2} + 101 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 64 a + 3 + \left(85 a + 39\right)\cdot 113 + \left(53 a + 61\right)\cdot 113^{2} + \left(66 a + 56\right)\cdot 113^{3} + \left(37 a + 13\right)\cdot 113^{4} +O\left(113^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 112 a + 89 + \left(99 a + 25\right)\cdot 113 + \left(a + 87\right)\cdot 113^{2} + \left(39 a + 52\right)\cdot 113^{3} + \left(101 a + 101\right)\cdot 113^{4} +O\left(113^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 74 a + 47 + \left(74 a + 24\right)\cdot 113 + \left(62 a + 6\right)\cdot 113^{2} + \left(35 a + 64\right)\cdot 113^{3} + \left(94 a + 81\right)\cdot 113^{4} +O\left(113^{ 5 }\right)$
$r_{ 4 }$ $=$ $ a + 77 + \left(13 a + 96\right)\cdot 113 + \left(111 a + 9\right)\cdot 113^{2} + \left(73 a + 67\right)\cdot 113^{3} + \left(11 a + 35\right)\cdot 113^{4} +O\left(113^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 39 a + 31 + \left(38 a + 55\right)\cdot 113 + \left(50 a + 5\right)\cdot 113^{2} + \left(77 a + 89\right)\cdot 113^{3} + \left(18 a + 47\right)\cdot 113^{4} +O\left(113^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 49 a + 93 + \left(27 a + 97\right)\cdot 113 + \left(59 a + 55\right)\cdot 113^{2} + \left(46 a + 9\right)\cdot 113^{3} + \left(75 a + 59\right)\cdot 113^{4} +O\left(113^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,5,6,4,3)$
$(1,6)(2,4)(3,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $1$ $1$
$1$ $2$ $(1,6)(2,4)(3,5)$ $-1$ $-1$
$1$ $3$ $(1,5,4)(2,6,3)$ $\zeta_{3}$ $-\zeta_{3} - 1$
$1$ $3$ $(1,4,5)(2,3,6)$ $-\zeta_{3} - 1$ $\zeta_{3}$
$1$ $6$ $(1,2,5,6,4,3)$ $\zeta_{3} + 1$ $-\zeta_{3}$
$1$ $6$ $(1,3,4,6,5,2)$ $-\zeta_{3}$ $\zeta_{3} + 1$
The blue line marks the conjugacy class containing complex conjugation.