Properties

Label 1.421.5t1.1c4
Dimension 1
Group $C_5$
Conductor $ 421 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_5$
Conductor:$421 $
Artin number field: Splitting field of $f= x^{5} - x^{4} - 168 x^{3} - 219 x^{2} + 3853 x + 3517 $ over $\Q$
Size of Galois orbit: 4
Smallest containing permutation representation: $C_5$
Parity: Even
Corresponding Dirichlet character: \(\chi_{421}(354,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 29 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 2 + 18\cdot 29 + 10\cdot 29^{2} + 14\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 7 + 14\cdot 29 + 12\cdot 29^{2} + 25\cdot 29^{3} + 18\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 11 + 14\cdot 29 + 11\cdot 29^{2} + 24\cdot 29^{3} + 11\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 15 + 18\cdot 29 + 17\cdot 29^{2} + 5\cdot 29^{3} + 16\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 24 + 21\cdot 29 + 5\cdot 29^{2} + 2\cdot 29^{3} + 26\cdot 29^{4} +O\left(29^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2,5,3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$1$
$1$$5$$(1,2,5,3,4)$$-\zeta_{5}^{3} - \zeta_{5}^{2} - \zeta_{5} - 1$
$1$$5$$(1,5,4,2,3)$$\zeta_{5}^{3}$
$1$$5$$(1,3,2,4,5)$$\zeta_{5}^{2}$
$1$$5$$(1,4,3,5,2)$$\zeta_{5}$
The blue line marks the conjugacy class containing complex conjugation.