Basic invariants
Dimension: | $1$ |
Group: | $C_2$ |
Conductor: | \(4195\)\(\medspace = 5 \cdot 839 \) |
Frobenius-Schur indicator: | $1$ |
Root number: | $1$ |
Artin field: | Galois closure of \(\Q(\sqrt{-4195}) \) |
Galois orbit size: | $1$ |
Smallest permutation container: | $C_2$ |
Parity: | odd |
Dirichlet character: | \(\displaystyle\left(\frac{-4195}{\bullet}\right)\) |
Projective image: | $C_1$ |
Projective field: | Galois closure of \(\Q\) |
Defining polynomial
$f(x)$ | $=$ |
\( x^{2} - x + 1049 \)
|
The roots of $f$ are computed in $\Q_{ 13 }$ to precision 5.
Roots:
$r_{ 1 }$ | $=$ |
\( 6 + 9\cdot 13 + 2\cdot 13^{2} + 3\cdot 13^{3} + 6\cdot 13^{4} +O(13^{5})\)
|
$r_{ 2 }$ | $=$ |
\( 8 + 3\cdot 13 + 10\cdot 13^{2} + 9\cdot 13^{3} + 6\cdot 13^{4} +O(13^{5})\)
|
Generators of the action on the roots $ r_{ 1 }, r_{ 2 } $
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $ r_{ 1 }, r_{ 2 } $ | Character value | Complex conjugation |
$1$ | $1$ | $()$ | $1$ | |
$1$ | $2$ | $(1,2)$ | $-1$ | ✓ |