Properties

Label 1.41.8t1.1c1
Dimension 1
Group $C_8$
Conductor $ 41 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_8$
Conductor:$41 $
Artin number field: Splitting field of $f= x^{8} - x^{7} + 3 x^{6} - 11 x^{5} + 44 x^{4} + 53 x^{3} + 153 x^{2} + 160 x + 59 $ over $\Q$
Size of Galois orbit: 4
Smallest containing permutation representation: $C_8$
Parity: Odd
Corresponding Dirichlet character: \(\chi_{41}(27,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 59 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 7\cdot 59 + 43\cdot 59^{2} + 36\cdot 59^{3} + 7\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 18 + 7\cdot 59 + 53\cdot 59^{2} + 56\cdot 59^{3} + 57\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 32 + 15\cdot 59 + 17\cdot 59^{2} + 49\cdot 59^{3} + 48\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 37 + 52\cdot 59 + 17\cdot 59^{2} + 4\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 45 + 3\cdot 59 + 54\cdot 59^{2} + 8\cdot 59^{3} + 4\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 50 + 42\cdot 59 + 8\cdot 59^{2} + 27\cdot 59^{3} + 35\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 56 + 43\cdot 59 + 41\cdot 59^{2} + 38\cdot 59^{3} + 35\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 58 + 3\cdot 59 + 18\cdot 59^{3} + 42\cdot 59^{4} +O\left(59^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,7,6,4,5,2,8,3)$
$(1,8,5,6)(2,4,7,3)$
$(1,5)(2,7)(3,4)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,5)(2,7)(3,4)(6,8)$$-1$
$1$$4$$(1,6,5,8)(2,3,7,4)$$\zeta_{8}^{2}$
$1$$4$$(1,8,5,6)(2,4,7,3)$$-\zeta_{8}^{2}$
$1$$8$$(1,7,6,4,5,2,8,3)$$\zeta_{8}$
$1$$8$$(1,4,8,7,5,3,6,2)$$\zeta_{8}^{3}$
$1$$8$$(1,2,6,3,5,7,8,4)$$-\zeta_{8}$
$1$$8$$(1,3,8,2,5,4,6,7)$$-\zeta_{8}^{3}$
The blue line marks the conjugacy class containing complex conjugation.