Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 73 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 41 + 65\cdot 73 + 54\cdot 73^{2} + 73^{3} + 5\cdot 73^{4} +O\left(73^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 53 + 28\cdot 73 + 29\cdot 73^{2} + 32\cdot 73^{3} + 6\cdot 73^{4} +O\left(73^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 64 + 69\cdot 73 + 57\cdot 73^{2} + 38\cdot 73^{3} + 42\cdot 73^{4} +O\left(73^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 67 + 26\cdot 73 + 36\cdot 73^{2} + 59\cdot 73^{3} + 47\cdot 73^{4} +O\left(73^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 68 + 27\cdot 73 + 40\cdot 73^{2} + 13\cdot 73^{3} + 44\cdot 73^{4} +O\left(73^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 5 }$
| Cycle notation |
| $(1,2,3,5,4)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 5 }$
| Character value |
| $1$ | $1$ | $()$ | $1$ |
| $1$ | $5$ | $(1,2,3,5,4)$ | $\zeta_{5}^{3}$ |
| $1$ | $5$ | $(1,3,4,2,5)$ | $\zeta_{5}$ |
| $1$ | $5$ | $(1,5,2,4,3)$ | $-\zeta_{5}^{3} - \zeta_{5}^{2} - \zeta_{5} - 1$ |
| $1$ | $5$ | $(1,4,5,3,2)$ | $\zeta_{5}^{2}$ |
The blue line marks the conjugacy class containing complex conjugation.