Properties

Label 1.41.5t1.1
Dimension 1
Group $C_5$
Conductor $ 41 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_5$
Conductor:$41 $
Artin number field: Splitting field of $f= x^{5} - x^{4} - 16 x^{3} - 5 x^{2} + 21 x + 9 $ over $\Q$
Size of Galois orbit: 4
Smallest containing permutation representation: $C_5$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 73 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 41 + 65\cdot 73 + 54\cdot 73^{2} + 73^{3} + 5\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 53 + 28\cdot 73 + 29\cdot 73^{2} + 32\cdot 73^{3} + 6\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 64 + 69\cdot 73 + 57\cdot 73^{2} + 38\cdot 73^{3} + 42\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 67 + 26\cdot 73 + 36\cdot 73^{2} + 59\cdot 73^{3} + 47\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 68 + 27\cdot 73 + 40\cdot 73^{2} + 13\cdot 73^{3} + 44\cdot 73^{4} +O\left(73^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2,3,5,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character values
$c1$ $c2$ $c3$ $c4$
$1$ $1$ $()$ $1$ $1$ $1$ $1$
$1$ $5$ $(1,2,3,5,4)$ $\zeta_{5}$ $\zeta_{5}^{2}$ $\zeta_{5}^{3}$ $-\zeta_{5}^{3} - \zeta_{5}^{2} - \zeta_{5} - 1$
$1$ $5$ $(1,3,4,2,5)$ $\zeta_{5}^{2}$ $-\zeta_{5}^{3} - \zeta_{5}^{2} - \zeta_{5} - 1$ $\zeta_{5}$ $\zeta_{5}^{3}$
$1$ $5$ $(1,5,2,4,3)$ $\zeta_{5}^{3}$ $\zeta_{5}$ $-\zeta_{5}^{3} - \zeta_{5}^{2} - \zeta_{5} - 1$ $\zeta_{5}^{2}$
$1$ $5$ $(1,4,5,3,2)$ $-\zeta_{5}^{3} - \zeta_{5}^{2} - \zeta_{5} - 1$ $\zeta_{5}^{3}$ $\zeta_{5}^{2}$ $\zeta_{5}$
The blue line marks the conjugacy class containing complex conjugation.