Properties

Label 1.3e2_7_31.6t1.1c2
Dimension 1
Group $C_6$
Conductor $ 3^{2} \cdot 7 \cdot 31 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_6$
Conductor:$1953= 3^{2} \cdot 7 \cdot 31 $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} - 15 x^{4} - 21 x^{3} + 678 x^{2} + 1824 x + 6112 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_6$
Parity: Odd
Corresponding Dirichlet character: \(\chi_{1953}(247,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 61 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 61 }$: $ x^{2} + 60 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 29 a + 24 + \left(44 a + 49\right)\cdot 61 + \left(30 a + 30\right)\cdot 61^{2} + \left(11 a + 15\right)\cdot 61^{3} + \left(15 a + 58\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 29 a + 34 + \left(44 a + 6\right)\cdot 61 + \left(30 a + 44\right)\cdot 61^{2} + \left(11 a + 17\right)\cdot 61^{3} + \left(15 a + 51\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 29 a + 22 + \left(44 a + 12\right)\cdot 61 + \left(30 a + 37\right)\cdot 61^{2} + \left(11 a + 56\right)\cdot 61^{3} + \left(15 a + 6\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 32 a + 2 + \left(16 a + 22\right)\cdot 61 + \left(30 a + 30\right)\cdot 61^{2} + \left(49 a + 59\right)\cdot 61^{3} + \left(45 a + 54\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 32 a + 53 + \left(16 a + 3\right)\cdot 61 + \left(30 a + 17\right)\cdot 61^{2} + \left(49 a + 57\right)\cdot 61^{3} + 45 a\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 32 a + 51 + \left(16 a + 27\right)\cdot 61 + \left(30 a + 23\right)\cdot 61^{2} + \left(49 a + 37\right)\cdot 61^{3} + \left(45 a + 10\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,5)(2,4)(3,6)$
$(1,3,2)(4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,5)(2,4)(3,6)$$-1$
$1$$3$$(1,3,2)(4,5,6)$$-\zeta_{3} - 1$
$1$$3$$(1,2,3)(4,6,5)$$\zeta_{3}$
$1$$6$$(1,6,2,5,3,4)$$\zeta_{3} + 1$
$1$$6$$(1,4,3,5,2,6)$$-\zeta_{3}$
The blue line marks the conjugacy class containing complex conjugation.