Properties

Label 1.3e2_7_23.6t1.2c2
Dimension 1
Group $C_6$
Conductor $ 3^{2} \cdot 7 \cdot 23 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_6$
Conductor:$1449= 3^{2} \cdot 7 \cdot 23 $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} - 21 x^{4} - 9 x^{3} + 588 x^{2} + 1572 x + 3968 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_6$
Parity: Odd
Corresponding Dirichlet character: \(\chi_{1449}(436,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 61 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 61 }$: $ x^{2} + 60 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 16 a + \left(24 a + 53\right)\cdot 61 + \left(60 a + 5\right)\cdot 61^{2} + \left(36 a + 48\right)\cdot 61^{3} + \left(32 a + 31\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 45 a + 16 + 36 a\cdot 61 + 42\cdot 61^{2} + \left(24 a + 24\right)\cdot 61^{3} + \left(28 a + 27\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 16 a + 10 + \left(24 a + 10\right)\cdot 61 + \left(60 a + 19\right)\cdot 61^{2} + \left(36 a + 50\right)\cdot 61^{3} + \left(32 a + 24\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 45 a + 26 + \left(36 a + 18\right)\cdot 61 + 55\cdot 61^{2} + \left(24 a + 26\right)\cdot 61^{3} + \left(28 a + 20\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 16 a + 59 + \left(24 a + 15\right)\cdot 61 + \left(60 a + 12\right)\cdot 61^{2} + \left(36 a + 28\right)\cdot 61^{3} + \left(32 a + 41\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 45 a + 14 + \left(36 a + 24\right)\cdot 61 + 48\cdot 61^{2} + \left(24 a + 4\right)\cdot 61^{3} + \left(28 a + 37\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,4)(5,6)$
$(1,5,3)(2,6,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,2)(3,4)(5,6)$$-1$
$1$$3$$(1,5,3)(2,6,4)$$-\zeta_{3} - 1$
$1$$3$$(1,3,5)(2,4,6)$$\zeta_{3}$
$1$$6$$(1,6,3,2,5,4)$$\zeta_{3} + 1$
$1$$6$$(1,4,5,2,3,6)$$-\zeta_{3}$
The blue line marks the conjugacy class containing complex conjugation.