Properties

Label 1.3e2_7_11.6t1.6c2
Dimension 1
Group $C_6$
Conductor $ 3^{2} \cdot 7 \cdot 11 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_6$
Conductor:$693= 3^{2} \cdot 7 \cdot 11 $
Artin number field: Splitting field of $f= x^{6} + 105 x^{4} - 238 x^{3} + 3276 x^{2} - 4872 x + 42112 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_6$
Parity: Odd
Corresponding Dirichlet character: \(\chi_{693}(164,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ a + 2 + \left(7 a + 4\right)\cdot 31 + \left(4 a + 2\right)\cdot 31^{2} + \left(30 a + 30\right)\cdot 31^{3} + \left(2 a + 16\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 15 a + 12 + \left(16 a + 18\right)\cdot 31 + \left(15 a + 29\right)\cdot 31^{2} + \left(7 a + 19\right)\cdot 31^{3} + \left(2 a + 19\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 14 a + 18 + \left(9 a + 21\right)\cdot 31 + \left(11 a + 15\right)\cdot 31^{2} + \left(8 a + 12\right)\cdot 31^{3} + \left(30 a + 28\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 17 a + 15 + \left(21 a + 26\right)\cdot 31 + \left(19 a + 28\right)\cdot 31^{2} + \left(22 a + 17\right)\cdot 31^{3} + 18\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 30 a + 4 + \left(23 a + 17\right)\cdot 31 + \left(26 a + 3\right)\cdot 31^{2} + 24\cdot 31^{3} + \left(28 a + 23\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 16 a + 11 + \left(14 a + 5\right)\cdot 31 + \left(15 a + 13\right)\cdot 31^{2} + \left(23 a + 19\right)\cdot 31^{3} + \left(28 a + 16\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,5)(2,6)(3,4)$
$(1,2,3,5,6,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,5)(2,6)(3,4)$$-1$
$1$$3$$(1,3,6)(2,5,4)$$-\zeta_{3} - 1$
$1$$3$$(1,6,3)(2,4,5)$$\zeta_{3}$
$1$$6$$(1,2,3,5,6,4)$$-\zeta_{3}$
$1$$6$$(1,4,6,5,3,2)$$\zeta_{3} + 1$
The blue line marks the conjugacy class containing complex conjugation.