Properties

Label 1.3e2_73.6t1.1
Dimension 1
Group $C_6$
Conductor $ 3^{2} \cdot 73 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_6$
Conductor:$657= 3^{2} \cdot 73 $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} - 57 x^{4} + 117 x^{3} + 921 x^{2} - 1083 x - 3943 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_6$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: $ x^{2} + 16 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 10 a + 14 + \left(14 a + 1\right)\cdot 17 + 8 a\cdot 17^{2} + \left(3 a + 11\right)\cdot 17^{3} + \left(8 a + 2\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 7 a + 1 + \left(2 a + 3\right)\cdot 17 + \left(8 a + 2\right)\cdot 17^{2} + \left(13 a + 8\right)\cdot 17^{3} + \left(8 a + 9\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 7 a + 7 + \left(2 a + 6\right)\cdot 17 + \left(8 a + 11\right)\cdot 17^{2} + \left(13 a + 5\right)\cdot 17^{3} + \left(8 a + 7\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 10 a + 8 + \left(14 a + 15\right)\cdot 17 + \left(8 a + 7\right)\cdot 17^{2} + \left(3 a + 13\right)\cdot 17^{3} + \left(8 a + 4\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 7 a + \left(2 a + 6\right)\cdot 17 + \left(8 a + 3\right)\cdot 17^{2} + \left(13 a + 12\right)\cdot 17^{3} + \left(8 a + 15\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 10 a + 7 + \left(14 a + 1\right)\cdot 17 + \left(8 a + 9\right)\cdot 17^{2} + 3 a\cdot 17^{3} + \left(8 a + 11\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3)(2,4)(5,6)$
$(1,2,6,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $1$ $1$
$1$ $2$ $(1,3)(2,4)(5,6)$ $-1$ $-1$
$1$ $3$ $(1,6,4)(2,3,5)$ $\zeta_{3}$ $-\zeta_{3} - 1$
$1$ $3$ $(1,4,6)(2,5,3)$ $-\zeta_{3} - 1$ $\zeta_{3}$
$1$ $6$ $(1,2,6,3,4,5)$ $\zeta_{3} + 1$ $-\zeta_{3}$
$1$ $6$ $(1,5,4,3,6,2)$ $-\zeta_{3}$ $\zeta_{3} + 1$
The blue line marks the conjugacy class containing complex conjugation.