Properties

Label 1.3e2_71.6t1.1c2
Dimension 1
Group $C_6$
Conductor $ 3^{2} \cdot 71 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_6$
Conductor:$639= 3^{2} \cdot 71 $
Artin number field: Splitting field of $f= x^{6} - 108 x^{4} - 53 x^{3} + 2916 x^{2} + 2862 x - 14687 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_6$
Parity: Even
Corresponding Dirichlet character: \(\chi_{639}(425,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 89 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 89 }$: $ x^{2} + 82 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 38 a + 39 + \left(20 a + 66\right)\cdot 89 + \left(17 a + 22\right)\cdot 89^{2} + \left(86 a + 81\right)\cdot 89^{3} + \left(8 a + 3\right)\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 40 a + 62 + \left(56 a + 66\right)\cdot 89 + \left(14 a + 74\right)\cdot 89^{2} + \left(22 a + 85\right)\cdot 89^{3} + \left(6 a + 48\right)\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 49 a + 75 + \left(32 a + 65\right)\cdot 89 + \left(74 a + 31\right)\cdot 89^{2} + \left(66 a + 48\right)\cdot 89^{3} + \left(82 a + 70\right)\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 51 a + 38 + \left(68 a + 82\right)\cdot 89 + \left(71 a + 33\right)\cdot 89^{2} + \left(2 a + 44\right)\cdot 89^{3} + \left(80 a + 69\right)\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 78 a + 65 + \left(76 a + 29\right)\cdot 89 + \left(31 a + 23\right)\cdot 89^{2} + \left(19 a + 85\right)\cdot 89^{3} + \left(15 a + 37\right)\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 11 a + 77 + \left(12 a + 44\right)\cdot 89 + \left(57 a + 80\right)\cdot 89^{2} + \left(69 a + 10\right)\cdot 89^{3} + \left(73 a + 36\right)\cdot 89^{4} +O\left(89^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,6)(3,5,4)$
$(1,4)(2,3)(5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,4)(2,3)(5,6)$$-1$
$1$$3$$(1,2,6)(3,5,4)$$\zeta_{3}$
$1$$3$$(1,6,2)(3,4,5)$$-\zeta_{3} - 1$
$1$$6$$(1,3,6,4,2,5)$$-\zeta_{3}$
$1$$6$$(1,5,2,4,6,3)$$\zeta_{3} + 1$
The blue line marks the conjugacy class containing complex conjugation.