Properties

Label 1.3e2_7.3t1.2
Dimension 1
Group $C_3$
Conductor $ 3^{2} \cdot 7 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_3$
Conductor:$63= 3^{2} \cdot 7 $
Artin number field: Splitting field of $f= x^{3} - 21 x - 28 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_3$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 31 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 2 + 17\cdot 31 + 13\cdot 31^{2} + 30\cdot 31^{3} + 15\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 6 + 21\cdot 31 + 5\cdot 31^{2} + 23\cdot 31^{3} + 9\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 23 + 23\cdot 31 + 11\cdot 31^{2} + 8\cdot 31^{3} + 5\cdot 31^{4} +O\left(31^{ 5 }\right)$

Generators of the action on the roots $ r_{ 1 }, r_{ 2 }, r_{ 3 } $

Cycle notation
$(1,2,3)$

Character values on conjugacy classes

SizeOrderAction on $ r_{ 1 }, r_{ 2 }, r_{ 3 } $ Character values
$c1$ $c2$
$1$ $1$ $()$ $1$ $1$
$1$ $3$ $(1,2,3)$ $\zeta_{3}$ $-\zeta_{3} - 1$
$1$ $3$ $(1,3,2)$ $-\zeta_{3} - 1$ $\zeta_{3}$
The blue line marks the conjugacy class containing complex conjugation.