Properties

Label 1.3e2_61.6t1.4c1
Dimension 1
Group $C_6$
Conductor $ 3^{2} \cdot 61 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_6$
Conductor:$549= 3^{2} \cdot 61 $
Artin number field: Splitting field of $f= x^{6} + 90 x^{4} - 46 x^{3} + 2025 x^{2} - 2070 x + 12241 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_6$
Parity: Odd
Corresponding Dirichlet character: \(\chi_{549}(182,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: $ x^{2} + 33 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 13 a + 18 + \left(33 a + 24\right)\cdot 37 + \left(9 a + 14\right)\cdot 37^{2} + \left(32 a + 11\right)\cdot 37^{3} + \left(23 a + 26\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 34 a + 20 + \left(36 a + 16\right)\cdot 37 + \left(35 a + 23\right)\cdot 37^{2} + \left(33 a + 33\right)\cdot 37^{3} + \left(5 a + 6\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 3 a + 8 + 19\cdot 37 + \left(a + 19\right)\cdot 37^{2} + \left(3 a + 22\right)\cdot 37^{3} + \left(31 a + 33\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 10 a + 33 + \left(33 a + 20\right)\cdot 37 + \left(8 a + 33\right)\cdot 37^{2} + \left(29 a + 31\right)\cdot 37^{3} + \left(29 a + 24\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 27 a + 36 + \left(3 a + 32\right)\cdot 37 + \left(28 a + 35\right)\cdot 37^{2} + \left(7 a + 28\right)\cdot 37^{3} + \left(7 a + 3\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 24 a + 33 + \left(3 a + 33\right)\cdot 37 + \left(27 a + 20\right)\cdot 37^{2} + \left(4 a + 19\right)\cdot 37^{3} + \left(13 a + 15\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,6)(2,3)(4,5)$
$(1,5,2)(3,6,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,6)(2,3)(4,5)$$-1$
$1$$3$$(1,5,2)(3,6,4)$$\zeta_{3}$
$1$$3$$(1,2,5)(3,4,6)$$-\zeta_{3} - 1$
$1$$6$$(1,4,2,6,5,3)$$-\zeta_{3}$
$1$$6$$(1,3,5,6,2,4)$$\zeta_{3} + 1$
The blue line marks the conjugacy class containing complex conjugation.