Properties

Label 1.3e2_5_79.6t1.1
Dimension 1
Group $C_6$
Conductor $ 3^{2} \cdot 5 \cdot 79 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_6$
Conductor:$3555= 3^{2} \cdot 5 \cdot 79 $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} + 294 x^{4} - 581 x^{3} + 29697 x^{2} - 30006 x + 1029999 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_6$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 71 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 71 }$: $ x^{2} + 69 x + 7 $
Roots:
$r_{ 1 }$ $=$ $ 7 a + 13 + \left(52 a + 14\right)\cdot 71 + \left(63 a + 53\right)\cdot 71^{2} + \left(27 a + 68\right)\cdot 71^{3} + \left(10 a + 24\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 64 a + 18 + \left(18 a + 10\right)\cdot 71 + \left(7 a + 22\right)\cdot 71^{2} + \left(43 a + 51\right)\cdot 71^{3} + \left(60 a + 18\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 64 a + 27 + \left(18 a + 40\right)\cdot 71 + \left(7 a + 57\right)\cdot 71^{2} + \left(43 a + 60\right)\cdot 71^{3} + \left(60 a + 17\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 7 a + 4 + \left(52 a + 55\right)\cdot 71 + \left(63 a + 17\right)\cdot 71^{2} + \left(27 a + 59\right)\cdot 71^{3} + \left(10 a + 25\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 7 a + 70 + \left(52 a + 68\right)\cdot 71 + \left(63 a + 28\right)\cdot 71^{2} + \left(27 a + 61\right)\cdot 71^{3} + \left(10 a + 30\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 64 a + 13 + \left(18 a + 24\right)\cdot 71 + \left(7 a + 33\right)\cdot 71^{2} + \left(43 a + 53\right)\cdot 71^{3} + \left(60 a + 23\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3)(2,4)(5,6)$
$(1,2,5,3,4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $1$ $1$
$1$ $2$ $(1,3)(2,4)(5,6)$ $-1$ $-1$
$1$ $3$ $(1,5,4)(2,3,6)$ $\zeta_{3}$ $-\zeta_{3} - 1$
$1$ $3$ $(1,4,5)(2,6,3)$ $-\zeta_{3} - 1$ $\zeta_{3}$
$1$ $6$ $(1,2,5,3,4,6)$ $\zeta_{3} + 1$ $-\zeta_{3}$
$1$ $6$ $(1,6,4,3,5,2)$ $-\zeta_{3}$ $\zeta_{3} + 1$
The blue line marks the conjugacy class containing complex conjugation.