Properties

Label 1.3e2_5_7.6t1.5c1
Dimension 1
Group $C_6$
Conductor $ 3^{2} \cdot 5 \cdot 7 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_6$
Conductor:$315= 3^{2} \cdot 5 \cdot 7 $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} + 24 x^{4} - 41 x^{3} + 267 x^{2} - 306 x + 1299 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_6$
Parity: Odd
Corresponding Dirichlet character: \(\chi_{315}(139,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: $ x^{2} + 18 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 10 a + 8 + \left(18 a + 1\right)\cdot 19 + \left(a + 3\right)\cdot 19^{2} + \left(10 a + 14\right)\cdot 19^{3} + \left(9 a + 17\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 10 a + 12 + 18 a\cdot 19 + \left(a + 12\right)\cdot 19^{2} + \left(10 a + 3\right)\cdot 19^{3} + \left(9 a + 3\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 9 a + 5 + 3\cdot 19 + \left(17 a + 12\right)\cdot 19^{2} + \left(8 a + 6\right)\cdot 19^{3} + \left(9 a + 17\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 10 a + 14 + \left(18 a + 13\right)\cdot 19 + \left(a + 9\right)\cdot 19^{2} + \left(10 a + 17\right)\cdot 19^{3} + \left(9 a + 17\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 9 a + 18 + 9\cdot 19 + \left(17 a + 5\right)\cdot 19^{2} + \left(8 a + 3\right)\cdot 19^{3} + \left(9 a + 17\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 9 a + 3 + 9\cdot 19 + \left(17 a + 14\right)\cdot 19^{2} + \left(8 a + 11\right)\cdot 19^{3} + \left(9 a + 2\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,5)(2,6)(3,4)$
$(1,2,4)(3,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,5)(2,6)(3,4)$$-1$
$1$$3$$(1,2,4)(3,5,6)$$\zeta_{3}$
$1$$3$$(1,4,2)(3,6,5)$$-\zeta_{3} - 1$
$1$$6$$(1,6,4,5,2,3)$$-\zeta_{3}$
$1$$6$$(1,3,2,5,4,6)$$\zeta_{3} + 1$
The blue line marks the conjugacy class containing complex conjugation.