Properties

Label 1.3e2_59.6t1.2c1
Dimension 1
Group $C_6$
Conductor $ 3^{2} \cdot 59 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_6$
Conductor:$531= 3^{2} \cdot 59 $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} + 42 x^{4} - 77 x^{3} + 717 x^{2} - 774 x + 4863 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_6$
Parity: Odd
Corresponding Dirichlet character: \(\chi_{531}(412,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: $ x^{2} + 33 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 5 a + 32 + \left(26 a + 2\right)\cdot 37 + 13\cdot 37^{2} + \left(4 a + 35\right)\cdot 37^{3} + \left(30 a + 10\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 5 a + 14 + \left(26 a + 7\right)\cdot 37 + 16\cdot 37^{2} + \left(4 a + 5\right)\cdot 37^{3} + \left(30 a + 24\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 32 a + 1 + \left(10 a + 14\right)\cdot 37 + \left(36 a + 19\right)\cdot 37^{2} + \left(32 a + 25\right)\cdot 37^{3} + \left(6 a + 17\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 32 a + 15 + \left(10 a + 28\right)\cdot 37 + \left(36 a + 26\right)\cdot 37^{2} + \left(32 a + 13\right)\cdot 37^{3} + \left(6 a + 16\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 5 a + 18 + \left(26 a + 25\right)\cdot 37 + 5\cdot 37^{2} + \left(4 a + 10\right)\cdot 37^{3} + \left(30 a + 12\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 32 a + 34 + \left(10 a + 32\right)\cdot 37 + \left(36 a + 29\right)\cdot 37^{2} + \left(32 a + 20\right)\cdot 37^{3} + \left(6 a + 29\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3,2,4,5,6)$
$(1,4)(2,6)(3,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,4)(2,6)(3,5)$$-1$
$1$$3$$(1,2,5)(3,4,6)$$\zeta_{3}$
$1$$3$$(1,5,2)(3,6,4)$$-\zeta_{3} - 1$
$1$$6$$(1,3,2,4,5,6)$$\zeta_{3} + 1$
$1$$6$$(1,6,5,4,2,3)$$-\zeta_{3}$
The blue line marks the conjugacy class containing complex conjugation.