Properties

Label 1.3e2_431.6t1.1
Dimension 1
Group $C_6$
Conductor $ 3^{2} \cdot 431 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_6$
Conductor:$3879= 3^{2} \cdot 431 $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} + 321 x^{4} - 635 x^{3} + 35313 x^{2} - 35649 x + 1330671 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_6$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: $ x^{2} + 16 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 13 a + 8 + \left(16 a + 11\right)\cdot 17 + \left(11 a + 4\right)\cdot 17^{2} + 16\cdot 17^{3} + \left(11 a + 6\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 4 a + 3 + 17 + \left(5 a + 1\right)\cdot 17^{2} + \left(16 a + 9\right)\cdot 17^{3} + \left(5 a + 6\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 4 a + 14 + 14\cdot 17 + \left(5 a + 8\right)\cdot 17^{2} + \left(16 a + 11\right)\cdot 17^{3} + \left(5 a + 8\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 4 a + 4 + 15\cdot 17 + \left(5 a + 16\right)\cdot 17^{2} + \left(16 a + 4\right)\cdot 17^{3} + 5 a\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 13 a + 7 + \left(16 a + 14\right)\cdot 17 + \left(11 a + 5\right)\cdot 17^{2} + 3\cdot 17^{3} + \left(11 a + 13\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 13 a + 1 + \left(16 a + 11\right)\cdot 17 + \left(11 a + 13\right)\cdot 17^{2} + 5\cdot 17^{3} + \left(11 a + 15\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,6,4,5,3)$
$(1,4)(2,5)(3,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $1$ $1$
$1$ $2$ $(1,4)(2,5)(3,6)$ $-1$ $-1$
$1$ $3$ $(1,6,5)(2,4,3)$ $\zeta_{3}$ $-\zeta_{3} - 1$
$1$ $3$ $(1,5,6)(2,3,4)$ $-\zeta_{3} - 1$ $\zeta_{3}$
$1$ $6$ $(1,2,6,4,5,3)$ $\zeta_{3} + 1$ $-\zeta_{3}$
$1$ $6$ $(1,3,5,4,6,2)$ $-\zeta_{3}$ $\zeta_{3} + 1$
The blue line marks the conjugacy class containing complex conjugation.