Properties

Label 1.3e2_37.9t1.2c1
Dimension 1
Group $C_9$
Conductor $ 3^{2} \cdot 37 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_9$
Conductor:$333= 3^{2} \cdot 37 $
Artin number field: Splitting field of $f= x^{9} - 111 x^{7} - 74 x^{6} + 3663 x^{5} + 5772 x^{4} - 37518 x^{3} - 84582 x^{2} + 39627 x + 129833 $ over $\Q$
Size of Galois orbit: 6
Smallest containing permutation representation: $C_9$
Parity: Even
Corresponding Dirichlet character: \(\chi_{333}(268,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{3} + x + 28 $
Roots:
$r_{ 1 }$ $=$ $ 20 a^{2} + 13 a + 3 + \left(a^{2} + 4 a + 1\right)\cdot 31 + \left(8 a^{2} + a + 26\right)\cdot 31^{2} + \left(23 a^{2} + 18 a + 25\right)\cdot 31^{3} + \left(14 a^{2} + 10 a + 9\right)\cdot 31^{4} + \left(7 a^{2} + 26 a + 15\right)\cdot 31^{5} +O\left(31^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 12 a^{2} + 12 a + 8 + \left(15 a^{2} + 26 a + 10\right)\cdot 31 + \left(19 a^{2} + 16 a + 23\right)\cdot 31^{2} + \left(14 a^{2} + 16 a + 9\right)\cdot 31^{3} + \left(27 a^{2} + 13 a + 18\right)\cdot 31^{4} + \left(6 a^{2} + 22 a + 4\right)\cdot 31^{5} +O\left(31^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 4 a^{2} + 15 a + 13 + \left(18 a^{2} + 13 a + 22\right)\cdot 31 + \left(26 a^{2} + 8 a + 17\right)\cdot 31^{2} + \left(25 a^{2} + 21 a + 27\right)\cdot 31^{3} + \left(30 a^{2} + 3 a + 30\right)\cdot 31^{4} + \left(20 a^{2} + a + 13\right)\cdot 31^{5} +O\left(31^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 18 a^{2} + 3 a + 12 + \left(13 a^{2} + 26 a + 19\right)\cdot 31 + \left(22 a^{2} + 4\right)\cdot 31^{2} + \left(20 a^{2} + 5 a + 24\right)\cdot 31^{3} + 16 a^{2}31^{4} + \left(9 a^{2} + 16 a + 27\right)\cdot 31^{5} +O\left(31^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 5 a^{2} + 26 a + 24 + \left(7 a^{2} + 19 a + 4\right)\cdot 31 + \left(5 a^{2} + 11 a + 24\right)\cdot 31^{2} + \left(7 a^{2} + 11 a + 4\right)\cdot 31^{3} + \left(22 a^{2} + 5 a + 25\right)\cdot 31^{4} + \left(13 a^{2} + 20 a + 29\right)\cdot 31^{5} +O\left(31^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 27 a^{2} + 6 a + 18 + \left(5 a^{2} + 16 a + 24\right)\cdot 31 + \left(23 a^{2} + 11 a + 25\right)\cdot 31^{2} + \left(12 a + 10\right)\cdot 31^{3} + \left(2 a^{2} + 30 a + 1\right)\cdot 31^{4} + \left(5 a^{2} + 21 a + 24\right)\cdot 31^{5} +O\left(31^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 7 a^{2} + 3 a + 15 + \left(11 a^{2} + 13 a + 7\right)\cdot 31 + \left(27 a^{2} + 21 a + 18\right)\cdot 31^{2} + \left(12 a^{2} + 22 a + 8\right)\cdot 31^{3} + \left(16 a^{2} + 16 a + 21\right)\cdot 31^{4} + \left(2 a^{2} + 3 a + 1\right)\cdot 31^{5} +O\left(31^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 8 a^{2} + 2 a + 26 + \left(10 a^{2} + 16 a + 6\right)\cdot 31 + \left(3 a^{2} + 18 a + 2\right)\cdot 31^{2} + \left(3 a^{2} + 14 a + 2\right)\cdot 31^{3} + \left(23 a^{2} + 25 a + 5\right)\cdot 31^{4} + \left(7 a^{2} + 25 a + 5\right)\cdot 31^{5} +O\left(31^{ 6 }\right)$
$r_{ 9 }$ $=$ $ 23 a^{2} + 13 a + 5 + \left(9 a^{2} + 19 a + 27\right)\cdot 31 + \left(19 a^{2} + 2 a + 12\right)\cdot 31^{2} + \left(15 a^{2} + 2 a + 10\right)\cdot 31^{3} + \left(a^{2} + 18 a + 11\right)\cdot 31^{4} + \left(19 a^{2} + 17 a + 2\right)\cdot 31^{5} +O\left(31^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,4,9,7,5,6,3,8,2)$
$(1,7,3)(2,9,6)(4,5,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$1$
$1$$3$$(1,7,3)(2,9,6)(4,5,8)$$\zeta_{9}^{3}$
$1$$3$$(1,3,7)(2,6,9)(4,8,5)$$-\zeta_{9}^{3} - 1$
$1$$9$$(1,4,9,7,5,6,3,8,2)$$\zeta_{9}$
$1$$9$$(1,9,5,3,2,4,7,6,8)$$\zeta_{9}^{2}$
$1$$9$$(1,5,2,7,8,9,3,4,6)$$\zeta_{9}^{4}$
$1$$9$$(1,6,4,3,9,8,7,2,5)$$\zeta_{9}^{5}$
$1$$9$$(1,8,6,7,4,2,3,5,9)$$-\zeta_{9}^{4} - \zeta_{9}$
$1$$9$$(1,2,8,3,6,5,7,9,4)$$-\zeta_{9}^{5} - \zeta_{9}^{2}$
The blue line marks the conjugacy class containing complex conjugation.