Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 7 }$ to precision 6.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 2\cdot 7 + 2\cdot 7^{2} + 6\cdot 7^{3} + 2\cdot 7^{4} + 6\cdot 7^{5} +O\left(7^{ 6 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 3 + 7 + 6\cdot 7^{2} + 3\cdot 7^{3} + 6\cdot 7^{4} +O\left(7^{ 6 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 4 + 3\cdot 7 + 5\cdot 7^{2} + 3\cdot 7^{3} + 4\cdot 7^{4} + 6\cdot 7^{5} +O\left(7^{ 6 }\right)$ |
Generators of the action on the roots
$ r_{ 1 }, r_{ 2 }, r_{ 3 } $
Character values on conjugacy classes
| Size | Order | Action on
$ r_{ 1 }, r_{ 2 }, r_{ 3 } $
| Character value |
| $1$ | $1$ | $()$ | $1$ |
| $1$ | $3$ | $(1,2,3)$ | $-\zeta_{3} - 1$ |
| $1$ | $3$ | $(1,3,2)$ | $\zeta_{3}$ |
The blue line marks the conjugacy class containing complex conjugation.