Properties

Label 1.3e2_23.6t1.1c2
Dimension 1
Group $C_6$
Conductor $ 3^{2} \cdot 23 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_6$
Conductor:$207= 3^{2} \cdot 23 $
Artin number field: Splitting field of $f= x^{6} - 36 x^{4} - 17 x^{3} + 324 x^{2} + 306 x - 359 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_6$
Parity: Even
Corresponding Dirichlet character: \(\chi_{207}(137,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: $ x^{2} + 18 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 5 a + 2 + \left(6 a + 13\right)\cdot 19 + 6 a\cdot 19^{2} + \left(13 a + 12\right)\cdot 19^{3} + \left(7 a + 11\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 14 a + 7 + \left(12 a + 14\right)\cdot 19 + 12 a\cdot 19^{2} + 5 a\cdot 19^{3} + \left(11 a + 6\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 12 a + 5 + \left(17 a + 14\right)\cdot 19 + \left(a + 14\right)\cdot 19^{2} + \left(10 a + 9\right)\cdot 19^{3} + \left(18 a + 4\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 17 a + 14 + \left(4 a + 3\right)\cdot 19 + 8 a\cdot 19^{2} + \left(4 a + 1\right)\cdot 19^{3} + 7 a\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 7 a + 17 + a\cdot 19 + \left(17 a + 18\right)\cdot 19^{2} + \left(8 a + 17\right)\cdot 19^{3} + 12\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 2 a + 12 + \left(14 a + 10\right)\cdot 19 + \left(10 a + 3\right)\cdot 19^{2} + \left(14 a + 16\right)\cdot 19^{3} + \left(11 a + 2\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,5)(4,6)$
$(1,3,6)(2,5,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,2)(3,5)(4,6)$$-1$
$1$$3$$(1,3,6)(2,5,4)$$-\zeta_{3} - 1$
$1$$3$$(1,6,3)(2,4,5)$$\zeta_{3}$
$1$$6$$(1,5,6,2,3,4)$$\zeta_{3} + 1$
$1$$6$$(1,4,3,2,6,5)$$-\zeta_{3}$
The blue line marks the conjugacy class containing complex conjugation.