Properties

Label 1.3e2_19.9t1.1
Dimension 1
Group $C_9$
Conductor $ 3^{2} \cdot 19 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_9$
Conductor:$171= 3^{2} \cdot 19 $
Artin number field: Splitting field of $f= x^{9} - 57 x^{7} - 38 x^{6} + 855 x^{5} + 1254 x^{4} - 3192 x^{3} - 7524 x^{2} - 4275 x - 703 $ over $\Q$
Size of Galois orbit: 6
Smallest containing permutation representation: $C_9$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 11 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 11 }$: $ x^{3} + 2 x + 9 $
Roots:
$r_{ 1 }$ $=$ $ 8 a^{2} + 10 a + 7 + \left(3 a^{2} + 6 a + 8\right)\cdot 11 + \left(4 a^{2} + 3 a + 5\right)\cdot 11^{2} + \left(8 a^{2} + 6 a + 7\right)\cdot 11^{3} + \left(2 a^{2} + 6 a + 3\right)\cdot 11^{4} + \left(7 a^{2} + a + 2\right)\cdot 11^{6} +O\left(11^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 6 a^{2} + 5 a + 8 + \left(3 a^{2} + 10 a + 4\right)\cdot 11 + \left(7 a^{2} + 6 a + 2\right)\cdot 11^{2} + \left(4 a^{2} + 6 a + 6\right)\cdot 11^{3} + \left(2 a^{2} + 2 a + 10\right)\cdot 11^{4} + \left(5 a^{2} + 9 a + 6\right)\cdot 11^{5} + \left(7 a^{2} + 2\right)\cdot 11^{6} +O\left(11^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 10 a^{2} + 8 a + 6 + \left(7 a^{2} + 3 a + 10\right)\cdot 11 + \left(8 a^{2} + 7 a + 7\right)\cdot 11^{2} + \left(2 a^{2} + 3 a + 3\right)\cdot 11^{3} + \left(2 a^{2} + 10\right)\cdot 11^{4} + \left(8 a^{2} + 5 a + 10\right)\cdot 11^{5} + \left(6 a^{2} + 2 a + 8\right)\cdot 11^{6} +O\left(11^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 2 a^{2} + 3 a + 10 + \left(a^{2} + 3 a + 8\right)\cdot 11 + \left(9 a^{2} + 3 a + 4\right)\cdot 11^{2} + \left(10 a^{2} + 3 a + 3\right)\cdot 11^{3} + \left(10 a^{2} + 6 a + 7\right)\cdot 11^{4} + \left(6 a^{2} + 4 a + 5\right)\cdot 11^{5} + \left(7 a^{2} + 3 a + 6\right)\cdot 11^{6} +O\left(11^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 9 a^{2} + 4 a + 1 + \left(7 a^{2} + 5 a + 3\right)\cdot 11 + \left(a^{2} + 5 a + 2\right)\cdot 11^{2} + \left(8 a^{2} + 4 a + 7\right)\cdot 11^{3} + \left(7 a^{2} + 6\right)\cdot 11^{4} + \left(3 a^{2} + 8\right)\cdot 11^{5} + \left(10 a^{2} + 3 a + 2\right)\cdot 11^{6} +O\left(11^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 10 a^{2} + 6 + \left(a^{2} + 4 a + 2\right)\cdot 11 + \left(4 a^{2} + 9\right)\cdot 11^{2} + \left(8 a^{2} + 4 a + 3\right)\cdot 11^{3} + \left(8 a^{2} + 4 a + 4\right)\cdot 11^{4} + \left(6 a^{2} + a + 5\right)\cdot 11^{5} + \left(7 a^{2} + 5 a + 6\right)\cdot 11^{6} +O\left(11^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 5 a^{2} + 8 a + 3 + \left(10 a^{2} + 9 a + 10\right)\cdot 11 + \left(4 a^{2} + a + 2\right)\cdot 11^{2} + \left(5 a^{2} + 7\right)\cdot 11^{3} + 4 a\cdot 11^{4} + \left(7 a^{2} + 10 a + 2\right)\cdot 11^{5} + \left(4 a^{2} + 6 a + 6\right)\cdot 11^{6} +O\left(11^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 4 a^{2} + 9 a + 9 + \left(a^{2} + 7 a + 1\right)\cdot 11 + \left(8 a^{2} + 7 a + 7\right)\cdot 11^{2} + \left(2 a^{2} + 7 a + 3\right)\cdot 11^{3} + \left(2 a^{2} + 7 a + 10\right)\cdot 11^{4} + \left(6 a^{2} + 2 a\right)\cdot 11^{5} + \left(4 a^{2} + 4 a + 6\right)\cdot 11^{6} +O\left(11^{ 7 }\right)$
$r_{ 9 }$ $=$ $ a^{2} + 8 a + 5 + \left(6 a^{2} + 3 a + 4\right)\cdot 11 + \left(6 a^{2} + 7 a + 1\right)\cdot 11^{2} + \left(3 a^{2} + 7 a + 1\right)\cdot 11^{3} + \left(6 a^{2} + 1\right)\cdot 11^{4} + \left(10 a^{2} + 10 a + 3\right)\cdot 11^{5} + \left(9 a^{2} + 5 a + 2\right)\cdot 11^{6} +O\left(11^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,5,7)(2,9,8)(3,4,6)$
$(1,9,3,7,2,6,5,8,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character values
$c1$ $c2$ $c3$ $c4$ $c5$ $c6$
$1$ $1$ $()$ $1$ $1$ $1$ $1$ $1$ $1$
$1$ $3$ $(1,7,5)(2,8,9)(3,6,4)$ $\zeta_{9}^{3}$ $-\zeta_{9}^{3} - 1$ $\zeta_{9}^{3}$ $-\zeta_{9}^{3} - 1$ $\zeta_{9}^{3}$ $-\zeta_{9}^{3} - 1$
$1$ $3$ $(1,5,7)(2,9,8)(3,4,6)$ $-\zeta_{9}^{3} - 1$ $\zeta_{9}^{3}$ $-\zeta_{9}^{3} - 1$ $\zeta_{9}^{3}$ $-\zeta_{9}^{3} - 1$ $\zeta_{9}^{3}$
$1$ $9$ $(1,9,3,7,2,6,5,8,4)$ $\zeta_{9}$ $\zeta_{9}^{2}$ $\zeta_{9}^{4}$ $\zeta_{9}^{5}$ $-\zeta_{9}^{4} - \zeta_{9}$ $-\zeta_{9}^{5} - \zeta_{9}^{2}$
$1$ $9$ $(1,3,2,5,4,9,7,6,8)$ $\zeta_{9}^{2}$ $\zeta_{9}^{4}$ $-\zeta_{9}^{5} - \zeta_{9}^{2}$ $\zeta_{9}$ $\zeta_{9}^{5}$ $-\zeta_{9}^{4} - \zeta_{9}$
$1$ $9$ $(1,2,4,7,8,3,5,9,6)$ $\zeta_{9}^{4}$ $-\zeta_{9}^{5} - \zeta_{9}^{2}$ $-\zeta_{9}^{4} - \zeta_{9}$ $\zeta_{9}^{2}$ $\zeta_{9}$ $\zeta_{9}^{5}$
$1$ $9$ $(1,6,9,5,3,8,7,4,2)$ $\zeta_{9}^{5}$ $\zeta_{9}$ $\zeta_{9}^{2}$ $-\zeta_{9}^{4} - \zeta_{9}$ $-\zeta_{9}^{5} - \zeta_{9}^{2}$ $\zeta_{9}^{4}$
$1$ $9$ $(1,8,6,7,9,4,5,2,3)$ $-\zeta_{9}^{4} - \zeta_{9}$ $\zeta_{9}^{5}$ $\zeta_{9}$ $-\zeta_{9}^{5} - \zeta_{9}^{2}$ $\zeta_{9}^{4}$ $\zeta_{9}^{2}$
$1$ $9$ $(1,4,8,5,6,2,7,3,9)$ $-\zeta_{9}^{5} - \zeta_{9}^{2}$ $-\zeta_{9}^{4} - \zeta_{9}$ $\zeta_{9}^{5}$ $\zeta_{9}^{4}$ $\zeta_{9}^{2}$ $\zeta_{9}$
The blue line marks the conjugacy class containing complex conjugation.