Properties

Label 1.3e2_19.6t1.3c1
Dimension 1
Group $C_6$
Conductor $ 3^{2} \cdot 19 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_6$
Conductor:$171= 3^{2} \cdot 19 $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} + 12 x^{4} - 17 x^{3} + 87 x^{2} - 114 x + 323 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_6$
Parity: Odd
Corresponding Dirichlet character: \(\chi_{171}(151,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: $ x^{2} + 33 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 20 a + 21 + \left(11 a + 25\right)\cdot 37 + \left(26 a + 31\right)\cdot 37^{2} + \left(3 a + 18\right)\cdot 37^{3} + \left(31 a + 3\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 17 a + 31 + \left(25 a + 32\right)\cdot 37 + \left(10 a + 3\right)\cdot 37^{2} + \left(33 a + 12\right)\cdot 37^{3} + \left(5 a + 1\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 20 a + 2 + \left(11 a + 21\right)\cdot 37 + \left(26 a + 28\right)\cdot 37^{2} + \left(3 a + 11\right)\cdot 37^{3} + \left(31 a + 27\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 17 a + 27 + \left(25 a + 14\right)\cdot 37 + \left(10 a + 14\right)\cdot 37^{2} + \left(33 a + 7\right)\cdot 37^{3} + \left(5 a + 13\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 20 a + 25 + \left(11 a + 6\right)\cdot 37 + \left(26 a + 21\right)\cdot 37^{2} + \left(3 a + 23\right)\cdot 37^{3} + \left(31 a + 28\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 17 a + 8 + \left(25 a + 10\right)\cdot 37 + \left(10 a + 11\right)\cdot 37^{2} + 33 a\cdot 37^{3} + 5 a\cdot 37^{4} +O\left(37^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4)(2,5)(3,6)$
$(1,6,5,4,3,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,4)(2,5)(3,6)$$-1$
$1$$3$$(1,5,3)(2,6,4)$$\zeta_{3}$
$1$$3$$(1,3,5)(2,4,6)$$-\zeta_{3} - 1$
$1$$6$$(1,6,5,4,3,2)$$\zeta_{3} + 1$
$1$$6$$(1,2,3,4,5,6)$$-\zeta_{3}$
The blue line marks the conjugacy class containing complex conjugation.