Properties

Label 1.3e2_17.6t1.2
Dimension 1
Group $C_6$
Conductor $ 3^{2} \cdot 17 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_6$
Conductor:$153= 3^{2} \cdot 17 $
Artin number field: Splitting field of $f= x^{6} + 24 x^{4} - 13 x^{3} + 144 x^{2} - 156 x + 361 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_6$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: $ x^{2} + 33 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ a + 5 + \left(11 a + 26\right)\cdot 37 + \left(34 a + 28\right)\cdot 37^{2} + \left(11 a + 8\right)\cdot 37^{3} + \left(14 a + 35\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 15 a + 23 + \left(a + 31\right)\cdot 37 + \left(4 a + 8\right)\cdot 37^{2} + \left(20 a + 29\right)\cdot 37^{3} + 2 a\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 14 a + 23 + \left(27 a + 25\right)\cdot 37 + \left(6 a + 21\right)\cdot 37^{2} + \left(8 a + 33\right)\cdot 37^{3} + \left(25 a + 10\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 36 a + 9 + \left(25 a + 32\right)\cdot 37 + \left(2 a + 6\right)\cdot 37^{2} + \left(25 a + 22\right)\cdot 37^{3} + \left(22 a + 6\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 22 a + 9 + \left(35 a + 22\right)\cdot 37 + \left(32 a + 23\right)\cdot 37^{2} + \left(16 a + 31\right)\cdot 37^{3} + \left(34 a + 27\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 23 a + 5 + \left(9 a + 10\right)\cdot 37 + \left(30 a + 21\right)\cdot 37^{2} + \left(28 a + 22\right)\cdot 37^{3} + \left(11 a + 29\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4)(2,5)(3,6)$
$(1,6,5,4,3,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $1$ $1$
$1$ $2$ $(1,4)(2,5)(3,6)$ $-1$ $-1$
$1$ $3$ $(1,5,3)(2,6,4)$ $\zeta_{3}$ $-\zeta_{3} - 1$
$1$ $3$ $(1,3,5)(2,4,6)$ $-\zeta_{3} - 1$ $\zeta_{3}$
$1$ $6$ $(1,6,5,4,3,2)$ $\zeta_{3} + 1$ $-\zeta_{3}$
$1$ $6$ $(1,2,3,4,5,6)$ $-\zeta_{3}$ $\zeta_{3} + 1$
The blue line marks the conjugacy class containing complex conjugation.