Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: $ x^{2} + 16 x + 3 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 12 a + 4 + \left(10 a + 15\right)\cdot 17 + \left(16 a + 12\right)\cdot 17^{2} + \left(10 a + 1\right)\cdot 17^{3} + \left(11 a + 2\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 15 a + 6 + \left(10 a + 8\right)\cdot 17 + \left(10 a + 11\right)\cdot 17^{2} + \left(10 a + 12\right)\cdot 17^{3} + \left(14 a + 4\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 2 a + 4 + \left(6 a + 4\right)\cdot 17 + \left(6 a + 11\right)\cdot 17^{2} + \left(6 a + 12\right)\cdot 17^{3} + \left(2 a + 8\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 3 a + 9 + 14\cdot 17 + \left(11 a + 9\right)\cdot 17^{2} + \left(16 a + 2\right)\cdot 17^{3} + \left(2 a + 6\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 14 a + 12 + \left(16 a + 11\right)\cdot 17 + \left(5 a + 3\right)\cdot 17^{2} + 8\cdot 17^{3} + \left(14 a + 9\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 5 a + 16 + \left(6 a + 13\right)\cdot 17 + 17^{2} + \left(6 a + 13\right)\cdot 17^{3} + \left(5 a + 2\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(1,5,3,6,4,2)$ |
| $(1,6)(2,3)(4,5)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character values |
| | |
$c1$ |
$c2$ |
| $1$ |
$1$ |
$()$ |
$1$ |
$1$ |
| $1$ |
$2$ |
$(1,6)(2,3)(4,5)$ |
$-1$ |
$-1$ |
| $1$ |
$3$ |
$(1,3,4)(2,5,6)$ |
$\zeta_{3}$ |
$-\zeta_{3} - 1$ |
| $1$ |
$3$ |
$(1,4,3)(2,6,5)$ |
$-\zeta_{3} - 1$ |
$\zeta_{3}$ |
| $1$ |
$6$ |
$(1,5,3,6,4,2)$ |
$\zeta_{3} + 1$ |
$-\zeta_{3}$ |
| $1$ |
$6$ |
$(1,2,4,6,3,5)$ |
$-\zeta_{3}$ |
$\zeta_{3} + 1$ |
The blue line marks the conjugacy class containing complex conjugation.