Properties

Label 1.3e2_127.6t1.1
Dimension 1
Group $C_6$
Conductor $ 3^{2} \cdot 127 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_6$
Conductor:$1143= 3^{2} \cdot 127 $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} + 93 x^{4} - 179 x^{3} + 3165 x^{2} - 3273 x + 39203 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_6$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 53 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 53 }$: $ x^{2} + 49 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 2 a + 5 + \left(39 a + 34\right)\cdot 53 + \left(14 a + 30\right)\cdot 53^{2} + \left(2 a + 2\right)\cdot 53^{3} + \left(47 a + 43\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 2 a + 27 + \left(39 a + 22\right)\cdot 53 + \left(14 a + 29\right)\cdot 53^{2} + \left(2 a + 46\right)\cdot 53^{3} + \left(47 a + 40\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 2 a + 37 + \left(39 a + 3\right)\cdot 53 + \left(14 a + 16\right)\cdot 53^{2} + \left(2 a + 12\right)\cdot 53^{3} + \left(47 a + 8\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 51 a + 35 + \left(13 a + 17\right)\cdot 53 + \left(38 a + 49\right)\cdot 53^{2} + \left(50 a + 40\right)\cdot 53^{3} + \left(5 a + 14\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 51 a + 13 + \left(13 a + 29\right)\cdot 53 + \left(38 a + 50\right)\cdot 53^{2} + \left(50 a + 49\right)\cdot 53^{3} + \left(5 a + 16\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 51 a + 45 + \left(13 a + 51\right)\cdot 53 + \left(38 a + 35\right)\cdot 53^{2} + \left(50 a + 6\right)\cdot 53^{3} + \left(5 a + 35\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,5)(2,4)(3,6)$
$(1,2,3)(4,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $1$ $1$
$1$ $2$ $(1,5)(2,4)(3,6)$ $-1$ $-1$
$1$ $3$ $(1,2,3)(4,6,5)$ $\zeta_{3}$ $-\zeta_{3} - 1$
$1$ $3$ $(1,3,2)(4,5,6)$ $-\zeta_{3} - 1$ $\zeta_{3}$
$1$ $6$ $(1,4,3,5,2,6)$ $-\zeta_{3}$ $\zeta_{3} + 1$
$1$ $6$ $(1,6,2,5,3,4)$ $\zeta_{3} + 1$ $-\zeta_{3}$
The blue line marks the conjugacy class containing complex conjugation.