Properties

Label 1.3e2_11_37.6t1.2c2
Dimension 1
Group $C_6$
Conductor $ 3^{2} \cdot 11 \cdot 37 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_6$
Conductor:$3663= 3^{2} \cdot 11 \cdot 37 $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} + 303 x^{4} - 599 x^{3} + 31515 x^{2} - 31833 x + 1124553 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_6$
Parity: Odd
Corresponding Dirichlet character: \(\chi_{3663}(2848,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 73 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 73 }$: $ x^{2} + 70 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 57 a + 47 + \left(58 a + 13\right)\cdot 73 + \left(66 a + 9\right)\cdot 73^{2} + \left(42 a + 70\right)\cdot 73^{3} + \left(49 a + 25\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 57 a + 27 + \left(58 a + 24\right)\cdot 73 + \left(66 a + 63\right)\cdot 73^{2} + \left(42 a + 8\right)\cdot 73^{3} + \left(49 a + 47\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 16 a + 61 + \left(14 a + 11\right)\cdot 73 + \left(6 a + 39\right)\cdot 73^{2} + \left(30 a + 72\right)\cdot 73^{3} + \left(23 a + 19\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 16 a + 52 + \left(14 a + 70\right)\cdot 73 + \left(6 a + 58\right)\cdot 73^{2} + \left(30 a + 70\right)\cdot 73^{3} + \left(23 a + 6\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 16 a + 72 + \left(14 a + 59\right)\cdot 73 + \left(6 a + 4\right)\cdot 73^{2} + \left(30 a + 59\right)\cdot 73^{3} + \left(23 a + 58\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 57 a + 36 + \left(58 a + 38\right)\cdot 73 + \left(66 a + 43\right)\cdot 73^{2} + \left(42 a + 10\right)\cdot 73^{3} + \left(49 a + 60\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3,2,5,6,4)$
$(1,5)(2,4)(3,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,5)(2,4)(3,6)$$-1$
$1$$3$$(1,2,6)(3,5,4)$$-\zeta_{3} - 1$
$1$$3$$(1,6,2)(3,4,5)$$\zeta_{3}$
$1$$6$$(1,3,2,5,6,4)$$-\zeta_{3}$
$1$$6$$(1,4,6,5,2,3)$$\zeta_{3} + 1$
The blue line marks the conjugacy class containing complex conjugation.