Properties

Label 1.3e2_11.6t1.2c1
Dimension 1
Group $C_6$
Conductor $ 3^{2} \cdot 11 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_6$
Conductor:$99= 3^{2} \cdot 11 $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} + 6 x^{4} - 5 x^{3} + 33 x^{2} - 54 x + 111 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_6$
Parity: Odd
Corresponding Dirichlet character: \(\chi_{99}(76,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: $ x^{2} + 16 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ a + 14 + \left(3 a + 3\right)\cdot 17 + \left(a + 3\right)\cdot 17^{2} + \left(16 a + 3\right)\cdot 17^{3} + \left(3 a + 1\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 16 a + 14 + \left(13 a + 8\right)\cdot 17 + \left(15 a + 2\right)\cdot 17^{2} + 5\cdot 17^{3} + \left(13 a + 12\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 16 a + 15 + \left(13 a + 5\right)\cdot 17 + \left(15 a + 1\right)\cdot 17^{2} + 17^{3} + \left(13 a + 6\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 4 }$ $=$ $ a + 13 + \left(3 a + 6\right)\cdot 17 + \left(a + 4\right)\cdot 17^{2} + \left(16 a + 7\right)\cdot 17^{3} + \left(3 a + 7\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 16 a + 8 + \left(13 a + 5\right)\cdot 17 + \left(15 a + 10\right)\cdot 17^{2} + 7\cdot 17^{3} + \left(13 a + 14\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 6 }$ $=$ $ a + 7 + \left(3 a + 3\right)\cdot 17 + \left(a + 12\right)\cdot 17^{2} + \left(16 a + 9\right)\cdot 17^{3} + \left(3 a + 9\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3)(2,4)(5,6)$
$(1,2,6,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,3)(2,4)(5,6)$$-1$
$1$$3$$(1,6,4)(2,3,5)$$\zeta_{3}$
$1$$3$$(1,4,6)(2,5,3)$$-\zeta_{3} - 1$
$1$$6$$(1,2,6,3,4,5)$$\zeta_{3} + 1$
$1$$6$$(1,5,4,3,6,2)$$-\zeta_{3}$
The blue line marks the conjugacy class containing complex conjugation.