Properties

Label 1.3_7_31.6t1.3
Dimension 1
Group $C_6$
Conductor $ 3 \cdot 7 \cdot 31 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_6$
Conductor:$651= 3 \cdot 7 \cdot 31 $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 73 x^{4} - 378 x^{3} + 5409 x^{2} - 16200 x + 50625 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_6$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 12 a + 11 + 24\cdot 29 + \left(24 a + 12\right)\cdot 29^{2} + \left(18 a + 4\right)\cdot 29^{3} + \left(28 a + 3\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 9 a + 1 + \left(13 a + 6\right)\cdot 29 + \left(7 a + 4\right)\cdot 29^{2} + \left(23 a + 5\right)\cdot 29^{3} + \left(16 a + 15\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 17 a + 13 + \left(28 a + 14\right)\cdot 29 + \left(4 a + 16\right)\cdot 29^{2} + \left(10 a + 16\right)\cdot 29^{3} + 11\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 20 a + 17 + \left(15 a + 5\right)\cdot 29 + \left(21 a + 28\right)\cdot 29^{2} + \left(5 a + 26\right)\cdot 29^{3} + \left(12 a + 17\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 23 a + 9 + \left(27 a + 18\right)\cdot 29 + \left(11 a + 25\right)\cdot 29^{2} + \left(5 a + 23\right)\cdot 29^{3} + \left(28 a + 9\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 6 a + 8 + \left(a + 18\right)\cdot 29 + \left(17 a + 28\right)\cdot 29^{2} + \left(23 a + 9\right)\cdot 29^{3} +O\left(29^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3)(2,4)(5,6)$
$(1,2,5)(3,4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $1$ $1$
$1$ $2$ $(1,3)(2,4)(5,6)$ $-1$ $-1$
$1$ $3$ $(1,2,5)(3,4,6)$ $\zeta_{3}$ $-\zeta_{3} - 1$
$1$ $3$ $(1,5,2)(3,6,4)$ $-\zeta_{3} - 1$ $\zeta_{3}$
$1$ $6$ $(1,4,5,3,2,6)$ $-\zeta_{3}$ $\zeta_{3} + 1$
$1$ $6$ $(1,6,2,3,5,4)$ $\zeta_{3} + 1$ $-\zeta_{3}$
The blue line marks the conjugacy class containing complex conjugation.