Properties

Label 1.3_7_19.6t1.7c2
Dimension 1
Group $C_6$
Conductor $ 3 \cdot 7 \cdot 19 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_6$
Conductor:$399= 3 \cdot 7 \cdot 19 $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 99 x^{4} - 99 x^{3} + 2843 x^{2} - 2843 x + 22051 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_6$
Parity: Odd
Corresponding Dirichlet character: \(\chi_{399}(341,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{2} + 38 x + 6 $
Roots:
$r_{ 1 }$ $=$ $ 22 a + 1 + \left(26 a + 38\right)\cdot 41 + \left(9 a + 20\right)\cdot 41^{2} + \left(14 a + 31\right)\cdot 41^{3} + \left(40 a + 13\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 21 a + 15 + \left(6 a + 29\right)\cdot 41 + \left(23 a + 35\right)\cdot 41^{2} + 33 a\cdot 41^{3} + \left(11 a + 19\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 19 a + 26 + \left(14 a + 13\right)\cdot 41 + \left(31 a + 23\right)\cdot 41^{2} + \left(26 a + 23\right)\cdot 41^{3} + 38\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 20 a + 37 + \left(34 a + 27\right)\cdot 41 + \left(17 a + 16\right)\cdot 41^{2} + \left(7 a + 37\right)\cdot 41^{3} + \left(29 a + 20\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 15 a + \left(2 a + 11\right)\cdot 41 + \left(25 a + 38\right)\cdot 41^{2} + \left(30 a + 1\right)\cdot 41^{3} + \left(20 a + 20\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 26 a + 4 + \left(38 a + 3\right)\cdot 41 + \left(15 a + 29\right)\cdot 41^{2} + \left(10 a + 27\right)\cdot 41^{3} + \left(20 a + 10\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3)(2,4)(5,6)$
$(1,2,5)(3,4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,3)(2,4)(5,6)$$-1$
$1$$3$$(1,2,5)(3,4,6)$$-\zeta_{3} - 1$
$1$$3$$(1,5,2)(3,6,4)$$\zeta_{3}$
$1$$6$$(1,4,5,3,2,6)$$\zeta_{3} + 1$
$1$$6$$(1,6,2,3,5,4)$$-\zeta_{3}$
The blue line marks the conjugacy class containing complex conjugation.