Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 11 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 4 + 11 + 3\cdot 11^{2} + 2\cdot 11^{3} + 11^{4} +O\left(11^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 8 + 9\cdot 11 + 7\cdot 11^{2} + 8\cdot 11^{3} + 9\cdot 11^{4} +O\left(11^{ 5 }\right)$ |
Generators of the action on the roots
$ r_{ 1 }, r_{ 2 } $
Character values on conjugacy classes
| Size | Order | Action on
$ r_{ 1 }, r_{ 2 } $
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$1$ |
| $1$ |
$2$ |
$(1,2)$ |
$-1$ |
The blue line marks the conjugacy class containing complex conjugation.