Properties

Label 1.3_7_13.4t1.1c2
Dimension 1
Group $C_4$
Conductor $ 3 \cdot 7 \cdot 13 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_4$
Conductor:$273= 3 \cdot 7 \cdot 13 $
Artin number field: Splitting field of $f= x^{4} - x^{3} + 67 x^{2} + 69 x + 393 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_4$
Parity: Odd
Corresponding Dirichlet character: \(\chi_{273}(83,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 23 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 1 + 8\cdot 23^{2} + 16\cdot 23^{3} + 16\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 12 + 10\cdot 23 + 20\cdot 23^{2} + 6\cdot 23^{3} + 19\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 14 + 10\cdot 23 + 20\cdot 23^{3} + 17\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 20 + 23 + 17\cdot 23^{2} + 2\cdot 23^{3} + 15\cdot 23^{4} +O\left(23^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,4,3,2)$
$(1,3)(2,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,3)(2,4)$$-1$
$1$$4$$(1,4,3,2)$$-\zeta_{4}$
$1$$4$$(1,2,3,4)$$\zeta_{4}$
The blue line marks the conjugacy class containing complex conjugation.