Properties

Label 1.3_7_11.6t1.2
Dimension 1
Group $C_6$
Conductor $ 3 \cdot 7 \cdot 11 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_6$
Conductor:$231= 3 \cdot 7 \cdot 11 $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 57 x^{4} - 57 x^{3} + 953 x^{2} - 953 x + 4537 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_6$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{2} + 38 x + 6 $
Roots:
$r_{ 1 }$ $=$ $ 13 a + 27 + \left(12 a + 16\right)\cdot 41 + \left(5 a + 24\right)\cdot 41^{2} + \left(35 a + 30\right)\cdot 41^{3} + \left(12 a + 38\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 20 a + 13 + \left(15 a + 14\right)\cdot 41 + \left(29 a + 38\right)\cdot 41^{2} + \left(34 a + 38\right)\cdot 41^{3} + \left(14 a + 30\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 28 a + 25 + \left(28 a + 40\right)\cdot 41 + \left(35 a + 27\right)\cdot 41^{2} + \left(5 a + 7\right)\cdot 41^{3} + \left(28 a + 1\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 39 a + 37 + \left(13 a + 3\right)\cdot 41 + \left(34 a + 39\right)\cdot 41^{2} + \left(15 a + 20\right)\cdot 41^{3} + \left(21 a + 22\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 21 a + 32 + \left(25 a + 40\right)\cdot 41 + \left(11 a + 28\right)\cdot 41^{2} + \left(6 a + 31\right)\cdot 41^{3} + \left(26 a + 40\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 2 a + 31 + \left(27 a + 6\right)\cdot 41 + \left(6 a + 5\right)\cdot 41^{2} + \left(25 a + 34\right)\cdot 41^{3} + \left(19 a + 29\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,6,5,3,4,2)$
$(1,3)(2,5)(4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $1$ $1$
$1$ $2$ $(1,3)(2,5)(4,6)$ $-1$ $-1$
$1$ $3$ $(1,5,4)(2,6,3)$ $\zeta_{3}$ $-\zeta_{3} - 1$
$1$ $3$ $(1,4,5)(2,3,6)$ $-\zeta_{3} - 1$ $\zeta_{3}$
$1$ $6$ $(1,6,5,3,4,2)$ $\zeta_{3} + 1$ $-\zeta_{3}$
$1$ $6$ $(1,2,4,3,5,6)$ $-\zeta_{3}$ $\zeta_{3} + 1$
The blue line marks the conjugacy class containing complex conjugation.