Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 9 a + 18 + \left(15 a + 18\right)\cdot 29 + \left(7 a + 11\right)\cdot 29^{2} + \left(19 a + 8\right)\cdot 29^{3} + 18 a\cdot 29^{4} +O\left(29^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 9 a + \left(15 a + 21\right)\cdot 29 + \left(7 a + 28\right)\cdot 29^{2} + \left(19 a + 9\right)\cdot 29^{3} + \left(18 a + 5\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 20 a + 16 + \left(13 a + 1\right)\cdot 29 + \left(21 a + 22\right)\cdot 29^{2} + \left(9 a + 11\right)\cdot 29^{3} + \left(10 a + 21\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 9 a + 2 + \left(15 a + 4\right)\cdot 29 + \left(7 a + 13\right)\cdot 29^{2} + \left(19 a + 22\right)\cdot 29^{3} + \left(18 a + 13\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 20 a + 5 + \left(13 a + 28\right)\cdot 29 + \left(21 a + 4\right)\cdot 29^{2} + \left(9 a + 10\right)\cdot 29^{3} + \left(10 a + 16\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 20 a + 18 + \left(13 a + 13\right)\cdot 29 + \left(21 a + 6\right)\cdot 29^{2} + \left(9 a + 24\right)\cdot 29^{3} + 10 a\cdot 29^{4} +O\left(29^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(1,4,2)(3,5,6)$ |
| $(1,5)(2,3)(4,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character value |
| $1$ | $1$ | $()$ | $1$ |
| $1$ | $2$ | $(1,5)(2,3)(4,6)$ | $-1$ |
| $1$ | $3$ | $(1,4,2)(3,5,6)$ | $\zeta_{3}$ |
| $1$ | $3$ | $(1,2,4)(3,6,5)$ | $-\zeta_{3} - 1$ |
| $1$ | $6$ | $(1,6,2,5,4,3)$ | $-\zeta_{3}$ |
| $1$ | $6$ | $(1,3,4,5,2,6)$ | $\zeta_{3} + 1$ |
The blue line marks the conjugacy class containing complex conjugation.