Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: $ x^{5} + x + 14 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 2 a^{4} + 3 a^{3} + 16 a^{2} + 9 a + 4 + \left(8 a^{4} + 5 a^{3} + 4 a^{2} + 9 a + 16\right)\cdot 17 + \left(8 a^{4} + 3 a^{3} + 10 a^{2} + 8 a + 14\right)\cdot 17^{2} + \left(2 a^{4} + 13 a^{3} + 15 a^{2} + 9 a + 2\right)\cdot 17^{3} + \left(2 a^{4} + 9 a^{3} + 11 a^{2} + 7 a + 7\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 2 a^{4} + 3 a^{3} + 16 a^{2} + 9 a + 10 + \left(8 a^{4} + 5 a^{3} + 4 a^{2} + 9 a + 3\right)\cdot 17 + \left(8 a^{4} + 3 a^{3} + 10 a^{2} + 8 a + 12\right)\cdot 17^{2} + \left(2 a^{4} + 13 a^{3} + 15 a^{2} + 9 a + 14\right)\cdot 17^{3} + \left(2 a^{4} + 9 a^{3} + 11 a^{2} + 7 a + 9\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 3 a^{4} + 6 a^{3} + 8 a^{2} + 12 a + 4 + \left(15 a^{4} + 15 a^{3} + 6 a^{2} + 7 a + 9\right)\cdot 17 + \left(7 a^{4} + 13 a^{3} + 16 a^{2} + 1\right)\cdot 17^{2} + \left(14 a^{4} + 6 a^{3} + 15 a^{2} + 14 a + 14\right)\cdot 17^{3} + \left(12 a^{4} + 7 a^{3} + 5 a^{2} + 4 a + 4\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 3 a^{4} + 6 a^{3} + 8 a^{2} + 12 a + 15 + \left(15 a^{4} + 15 a^{3} + 6 a^{2} + 7 a + 4\right)\cdot 17 + \left(7 a^{4} + 13 a^{3} + 16 a^{2} + 4\right)\cdot 17^{2} + \left(14 a^{4} + 6 a^{3} + 15 a^{2} + 14 a + 2\right)\cdot 17^{3} + \left(12 a^{4} + 7 a^{3} + 5 a^{2} + 4 a + 2\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 5 a^{4} + 2 a^{3} + 7 a^{2} + 2 a + 3 + \left(8 a^{4} + 15 a^{3} + 5 a^{2} + 10 a + 6\right)\cdot 17 + \left(8 a^{4} + 8 a^{3} + 7 a + 1\right)\cdot 17^{2} + \left(3 a^{4} + 6 a^{3} + 16 a^{2} + 12 a + 7\right)\cdot 17^{3} + \left(4 a^{4} + 13 a^{3} + 11 a^{2} + 5 a + 5\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 5 a^{4} + 2 a^{3} + 7 a^{2} + 2 a + 9 + \left(8 a^{4} + 15 a^{3} + 5 a^{2} + 10 a + 10\right)\cdot 17 + \left(8 a^{4} + 8 a^{3} + 7 a + 15\right)\cdot 17^{2} + \left(3 a^{4} + 6 a^{3} + 16 a^{2} + 12 a + 1\right)\cdot 17^{3} + \left(4 a^{4} + 13 a^{3} + 11 a^{2} + 5 a + 8\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 9 a^{4} + 4 a^{3} + 14 a^{2} + 2 + \left(10 a^{4} + 15 a^{3} + 14 a^{2} + 4 a + 2\right)\cdot 17 + \left(15 a^{4} + 16 a^{3} + 4 a^{2} + 10 a + 11\right)\cdot 17^{2} + \left(16 a^{4} + 16 a^{3} + 8 a^{2} + 13 a + 12\right)\cdot 17^{3} + \left(5 a^{4} + 15 a^{3} + 7 a^{2} + 8 a + 2\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 9 a^{4} + 4 a^{3} + 14 a^{2} + 13 + \left(10 a^{4} + 15 a^{3} + 14 a^{2} + 4 a + 14\right)\cdot 17 + \left(15 a^{4} + 16 a^{3} + 4 a^{2} + 10 a + 13\right)\cdot 17^{2} + \left(16 a^{4} + 16 a^{3} + 8 a^{2} + 13 a\right)\cdot 17^{3} + \left(5 a^{4} + 15 a^{3} + 7 a^{2} + 8 a\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$ |
| $r_{ 9 }$ |
$=$ |
$ 15 a^{4} + 2 a^{3} + 6 a^{2} + 11 a + \left(8 a^{4} + 2 a^{2} + 2 a + 11\right)\cdot 17 + \left(10 a^{4} + 8 a^{3} + 2 a^{2} + 7 a + 3\right)\cdot 17^{2} + \left(13 a^{4} + 7 a^{3} + 12 a^{2} + a + 3\right)\cdot 17^{3} + \left(8 a^{4} + 4 a^{3} + 13 a^{2} + 7 a + 15\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$ |
| $r_{ 10 }$ |
$=$ |
$ 15 a^{4} + 2 a^{3} + 6 a^{2} + 11 a + 11 + \left(8 a^{4} + 2 a^{2} + 2 a + 6\right)\cdot 17 + \left(10 a^{4} + 8 a^{3} + 2 a^{2} + 7 a + 6\right)\cdot 17^{2} + \left(13 a^{4} + 7 a^{3} + 12 a^{2} + a + 8\right)\cdot 17^{3} + \left(8 a^{4} + 4 a^{3} + 13 a^{2} + 7 a + 12\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 10 }$
| Cycle notation |
| $(1,9,8,6,4,2,10,7,5,3)$ |
| $(1,2)(3,4)(5,6)(7,8)(9,10)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 10 }$
| Character value |
| $1$ | $1$ | $()$ | $1$ |
| $1$ | $2$ | $(1,2)(3,4)(5,6)(7,8)(9,10)$ | $-1$ |
| $1$ | $5$ | $(1,8,4,10,5)(2,7,3,9,6)$ | $-\zeta_{5}^{3} - \zeta_{5}^{2} - \zeta_{5} - 1$ |
| $1$ | $5$ | $(1,4,5,8,10)(2,3,6,7,9)$ | $\zeta_{5}^{3}$ |
| $1$ | $5$ | $(1,10,8,5,4)(2,9,7,6,3)$ | $\zeta_{5}^{2}$ |
| $1$ | $5$ | $(1,5,10,4,8)(2,6,9,3,7)$ | $\zeta_{5}$ |
| $1$ | $10$ | $(1,9,8,6,4,2,10,7,5,3)$ | $-\zeta_{5}^{2}$ |
| $1$ | $10$ | $(1,6,10,3,8,2,5,9,4,7)$ | $-\zeta_{5}$ |
| $1$ | $10$ | $(1,7,4,9,5,2,8,3,10,6)$ | $\zeta_{5}^{3} + \zeta_{5}^{2} + \zeta_{5} + 1$ |
| $1$ | $10$ | $(1,3,5,7,10,2,4,6,8,9)$ | $-\zeta_{5}^{3}$ |
The blue line marks the conjugacy class containing complex conjugation.