Properties

Label 1.3_5_11.10t1.1
Dimension 1
Group $C_{10}$
Conductor $ 3 \cdot 5 \cdot 11 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_{10}$
Conductor:$165= 3 \cdot 5 \cdot 11 $
Artin number field: Splitting field of $f= x^{10} - 3 x^{9} + 14 x^{8} - 28 x^{7} + 130 x^{6} - 192 x^{5} + 706 x^{4} - 677 x^{3} + 2494 x^{2} - 1125 x + 4531 $ over $\Q$
Size of Galois orbit: 4
Smallest containing permutation representation: $C_{10}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: $ x^{5} + x + 14 $
Roots:
$r_{ 1 }$ $=$ $ 2 a^{4} + 3 a^{3} + 16 a^{2} + 9 a + 4 + \left(8 a^{4} + 5 a^{3} + 4 a^{2} + 9 a + 16\right)\cdot 17 + \left(8 a^{4} + 3 a^{3} + 10 a^{2} + 8 a + 14\right)\cdot 17^{2} + \left(2 a^{4} + 13 a^{3} + 15 a^{2} + 9 a + 2\right)\cdot 17^{3} + \left(2 a^{4} + 9 a^{3} + 11 a^{2} + 7 a + 7\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 2 a^{4} + 3 a^{3} + 16 a^{2} + 9 a + 10 + \left(8 a^{4} + 5 a^{3} + 4 a^{2} + 9 a + 3\right)\cdot 17 + \left(8 a^{4} + 3 a^{3} + 10 a^{2} + 8 a + 12\right)\cdot 17^{2} + \left(2 a^{4} + 13 a^{3} + 15 a^{2} + 9 a + 14\right)\cdot 17^{3} + \left(2 a^{4} + 9 a^{3} + 11 a^{2} + 7 a + 9\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 3 a^{4} + 6 a^{3} + 8 a^{2} + 12 a + 4 + \left(15 a^{4} + 15 a^{3} + 6 a^{2} + 7 a + 9\right)\cdot 17 + \left(7 a^{4} + 13 a^{3} + 16 a^{2} + 1\right)\cdot 17^{2} + \left(14 a^{4} + 6 a^{3} + 15 a^{2} + 14 a + 14\right)\cdot 17^{3} + \left(12 a^{4} + 7 a^{3} + 5 a^{2} + 4 a + 4\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 3 a^{4} + 6 a^{3} + 8 a^{2} + 12 a + 15 + \left(15 a^{4} + 15 a^{3} + 6 a^{2} + 7 a + 4\right)\cdot 17 + \left(7 a^{4} + 13 a^{3} + 16 a^{2} + 4\right)\cdot 17^{2} + \left(14 a^{4} + 6 a^{3} + 15 a^{2} + 14 a + 2\right)\cdot 17^{3} + \left(12 a^{4} + 7 a^{3} + 5 a^{2} + 4 a + 2\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 5 a^{4} + 2 a^{3} + 7 a^{2} + 2 a + 3 + \left(8 a^{4} + 15 a^{3} + 5 a^{2} + 10 a + 6\right)\cdot 17 + \left(8 a^{4} + 8 a^{3} + 7 a + 1\right)\cdot 17^{2} + \left(3 a^{4} + 6 a^{3} + 16 a^{2} + 12 a + 7\right)\cdot 17^{3} + \left(4 a^{4} + 13 a^{3} + 11 a^{2} + 5 a + 5\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 5 a^{4} + 2 a^{3} + 7 a^{2} + 2 a + 9 + \left(8 a^{4} + 15 a^{3} + 5 a^{2} + 10 a + 10\right)\cdot 17 + \left(8 a^{4} + 8 a^{3} + 7 a + 15\right)\cdot 17^{2} + \left(3 a^{4} + 6 a^{3} + 16 a^{2} + 12 a + 1\right)\cdot 17^{3} + \left(4 a^{4} + 13 a^{3} + 11 a^{2} + 5 a + 8\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 9 a^{4} + 4 a^{3} + 14 a^{2} + 2 + \left(10 a^{4} + 15 a^{3} + 14 a^{2} + 4 a + 2\right)\cdot 17 + \left(15 a^{4} + 16 a^{3} + 4 a^{2} + 10 a + 11\right)\cdot 17^{2} + \left(16 a^{4} + 16 a^{3} + 8 a^{2} + 13 a + 12\right)\cdot 17^{3} + \left(5 a^{4} + 15 a^{3} + 7 a^{2} + 8 a + 2\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 9 a^{4} + 4 a^{3} + 14 a^{2} + 13 + \left(10 a^{4} + 15 a^{3} + 14 a^{2} + 4 a + 14\right)\cdot 17 + \left(15 a^{4} + 16 a^{3} + 4 a^{2} + 10 a + 13\right)\cdot 17^{2} + \left(16 a^{4} + 16 a^{3} + 8 a^{2} + 13 a\right)\cdot 17^{3} + \left(5 a^{4} + 15 a^{3} + 7 a^{2} + 8 a\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 9 }$ $=$ $ 15 a^{4} + 2 a^{3} + 6 a^{2} + 11 a + \left(8 a^{4} + 2 a^{2} + 2 a + 11\right)\cdot 17 + \left(10 a^{4} + 8 a^{3} + 2 a^{2} + 7 a + 3\right)\cdot 17^{2} + \left(13 a^{4} + 7 a^{3} + 12 a^{2} + a + 3\right)\cdot 17^{3} + \left(8 a^{4} + 4 a^{3} + 13 a^{2} + 7 a + 15\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 10 }$ $=$ $ 15 a^{4} + 2 a^{3} + 6 a^{2} + 11 a + 11 + \left(8 a^{4} + 2 a^{2} + 2 a + 6\right)\cdot 17 + \left(10 a^{4} + 8 a^{3} + 2 a^{2} + 7 a + 6\right)\cdot 17^{2} + \left(13 a^{4} + 7 a^{3} + 12 a^{2} + a + 8\right)\cdot 17^{3} + \left(8 a^{4} + 4 a^{3} + 13 a^{2} + 7 a + 12\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 10 }$

Cycle notation
$(1,9,8,6,4,2,10,7,5,3)$
$(1,2)(3,4)(5,6)(7,8)(9,10)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 10 }$ Character values
$c1$ $c2$ $c3$ $c4$
$1$ $1$ $()$ $1$ $1$ $1$ $1$
$1$ $2$ $(1,2)(3,4)(5,6)(7,8)(9,10)$ $-1$ $-1$ $-1$ $-1$
$1$ $5$ $(1,8,4,10,5)(2,7,3,9,6)$ $\zeta_{5}$ $\zeta_{5}^{2}$ $\zeta_{5}^{3}$ $-\zeta_{5}^{3} - \zeta_{5}^{2} - \zeta_{5} - 1$
$1$ $5$ $(1,4,5,8,10)(2,3,6,7,9)$ $\zeta_{5}^{2}$ $-\zeta_{5}^{3} - \zeta_{5}^{2} - \zeta_{5} - 1$ $\zeta_{5}$ $\zeta_{5}^{3}$
$1$ $5$ $(1,10,8,5,4)(2,9,7,6,3)$ $\zeta_{5}^{3}$ $\zeta_{5}$ $-\zeta_{5}^{3} - \zeta_{5}^{2} - \zeta_{5} - 1$ $\zeta_{5}^{2}$
$1$ $5$ $(1,5,10,4,8)(2,6,9,3,7)$ $-\zeta_{5}^{3} - \zeta_{5}^{2} - \zeta_{5} - 1$ $\zeta_{5}^{3}$ $\zeta_{5}^{2}$ $\zeta_{5}$
$1$ $10$ $(1,9,8,6,4,2,10,7,5,3)$ $-\zeta_{5}^{3}$ $-\zeta_{5}$ $\zeta_{5}^{3} + \zeta_{5}^{2} + \zeta_{5} + 1$ $-\zeta_{5}^{2}$
$1$ $10$ $(1,6,10,3,8,2,5,9,4,7)$ $\zeta_{5}^{3} + \zeta_{5}^{2} + \zeta_{5} + 1$ $-\zeta_{5}^{3}$ $-\zeta_{5}^{2}$ $-\zeta_{5}$
$1$ $10$ $(1,7,4,9,5,2,8,3,10,6)$ $-\zeta_{5}$ $-\zeta_{5}^{2}$ $-\zeta_{5}^{3}$ $\zeta_{5}^{3} + \zeta_{5}^{2} + \zeta_{5} + 1$
$1$ $10$ $(1,3,5,7,10,2,4,6,8,9)$ $-\zeta_{5}^{2}$ $\zeta_{5}^{3} + \zeta_{5}^{2} + \zeta_{5} + 1$ $-\zeta_{5}$ $-\zeta_{5}^{3}$
The blue line marks the conjugacy class containing complex conjugation.