Properties

Label 1.3_43.6t1.2
Dimension 1
Group $C_6$
Conductor $ 3 \cdot 43 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_6$
Conductor:$129= 3 \cdot 43 $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 15 x^{4} + 30 x^{3} + 188 x^{2} + 112 x + 64 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_6$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{2} + 38 x + 6 $
Roots:
$r_{ 1 }$ $=$ $ 12 a + 27 + \left(39 a + 10\right)\cdot 41 + \left(8 a + 20\right)\cdot 41^{2} + \left(19 a + 18\right)\cdot 41^{3} + \left(21 a + 13\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 14 a + 29 + \left(2 a + 8\right)\cdot 41 + \left(4 a + 29\right)\cdot 41^{2} + \left(3 a + 19\right)\cdot 41^{3} + \left(3 a + 25\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 17 a + 3 + \left(17 a + 16\right)\cdot 41 + \left(3 a + 37\right)\cdot 41^{2} + \left(9 a + 4\right)\cdot 41^{3} + \left(4 a + 36\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 27 a + 30 + \left(38 a + 1\right)\cdot 41 + \left(36 a + 39\right)\cdot 41^{2} + \left(37 a + 24\right)\cdot 41^{3} + \left(37 a + 31\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 24 a + 13 + \left(23 a + 10\right)\cdot 41 + \left(37 a + 30\right)\cdot 41^{2} + \left(31 a + 28\right)\cdot 41^{3} + \left(36 a + 39\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 29 a + 22 + \left(a + 34\right)\cdot 41 + \left(32 a + 7\right)\cdot 41^{2} + \left(21 a + 26\right)\cdot 41^{3} + \left(19 a + 17\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,5,6,4,3)$
$(1,6)(2,4)(3,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $1$ $1$
$1$ $2$ $(1,6)(2,4)(3,5)$ $-1$ $-1$
$1$ $3$ $(1,5,4)(2,6,3)$ $\zeta_{3}$ $-\zeta_{3} - 1$
$1$ $3$ $(1,4,5)(2,3,6)$ $-\zeta_{3} - 1$ $\zeta_{3}$
$1$ $6$ $(1,2,5,6,4,3)$ $\zeta_{3} + 1$ $-\zeta_{3}$
$1$ $6$ $(1,3,4,6,5,2)$ $-\zeta_{3}$ $\zeta_{3} + 1$
The blue line marks the conjugacy class containing complex conjugation.