Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 13 }$ to precision 6.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 7\cdot 13 + 5\cdot 13^{2} + 12\cdot 13^{3} + 6\cdot 13^{4} + 8\cdot 13^{5} +O\left(13^{ 6 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 4 + 5\cdot 13 + 11\cdot 13^{2} + 8\cdot 13^{3} + 11\cdot 13^{4} + 10\cdot 13^{5} +O\left(13^{ 6 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 11 + 9\cdot 13 + 2\cdot 13^{2} + 3\cdot 13^{3} + 2\cdot 13^{4} + 3\cdot 13^{5} +O\left(13^{ 6 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 12 + 3\cdot 13 + 6\cdot 13^{2} + 13^{3} + 5\cdot 13^{4} + 3\cdot 13^{5} +O\left(13^{ 6 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 4 }$
| Cycle notation |
| $(1,2,3,4)$ |
| $(1,3)(2,4)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 4 }$
| Character values |
| | |
$c1$ |
$c2$ |
| $1$ |
$1$ |
$()$ |
$1$ |
$1$ |
| $1$ |
$2$ |
$(1,3)(2,4)$ |
$-1$ |
$-1$ |
| $1$ |
$4$ |
$(1,2,3,4)$ |
$\zeta_{4}$ |
$-\zeta_{4}$ |
| $1$ |
$4$ |
$(1,4,3,2)$ |
$-\zeta_{4}$ |
$\zeta_{4}$ |
The blue line marks the conjugacy class containing complex conjugation.