Properties

Label 1.3_29_31.6t1.1c2
Dimension 1
Group $C_6$
Conductor $ 3 \cdot 29 \cdot 31 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_6$
Conductor:$2697= 3 \cdot 29 \cdot 31 $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 45 x^{4} - 39 x^{3} + 1538 x^{2} + 184 x + 22336 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_6$
Parity: Odd
Corresponding Dirichlet character: \(\chi_{2697}(521,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{2} + 21 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 21 a + 20 + \left(19 a + 10\right)\cdot 23 + \left(a + 9\right)\cdot 23^{2} + \left(21 a + 14\right)\cdot 23^{3} + \left(7 a + 9\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 2 a + 15 + \left(3 a + 16\right)\cdot 23 + \left(21 a + 18\right)\cdot 23^{2} + \left(a + 6\right)\cdot 23^{3} + \left(15 a + 11\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 2 a + 16 + \left(3 a + 6\right)\cdot 23 + \left(21 a + 16\right)\cdot 23^{2} + \left(a + 8\right)\cdot 23^{3} + \left(15 a + 4\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 2 a + 21 + \left(3 a + 4\right)\cdot 23 + \left(21 a + 21\right)\cdot 23^{2} + \left(a + 21\right)\cdot 23^{3} + \left(15 a + 10\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 21 a + 19 + \left(19 a + 20\right)\cdot 23 + \left(a + 11\right)\cdot 23^{2} + \left(21 a + 12\right)\cdot 23^{3} + \left(7 a + 16\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 21 a + 2 + \left(19 a + 9\right)\cdot 23 + \left(a + 14\right)\cdot 23^{2} + \left(21 a + 4\right)\cdot 23^{3} + \left(7 a + 16\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3)(2,5)(4,6)$
$(1,4,5,3,6,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,3)(2,5)(4,6)$$-1$
$1$$3$$(1,5,6)(2,4,3)$$-\zeta_{3} - 1$
$1$$3$$(1,6,5)(2,3,4)$$\zeta_{3}$
$1$$6$$(1,4,5,3,6,2)$$-\zeta_{3}$
$1$$6$$(1,2,6,3,5,4)$$\zeta_{3} + 1$
The blue line marks the conjugacy class containing complex conjugation.