Properties

Label 1.3_280909.2t1.1
Dimension 1
Group $C_2$
Conductor $ 3 \cdot 280909 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_2$
Conductor:$842727= 3 \cdot 280909 $
Artin number field: Splitting field of $f= x^{2} - x + 210682 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_2$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 11 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 4 + 9\cdot 11 + 6\cdot 11^{2} + 9\cdot 11^{3} + 5\cdot 11^{4} +O\left(11^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 8 + 11 + 4\cdot 11^{2} + 11^{3} + 5\cdot 11^{4} +O\left(11^{ 5 }\right)$

Generators of the action on the roots $ r_{ 1 }, r_{ 2 } $

Cycle notation
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $ r_{ 1 }, r_{ 2 } $ Character values
$c1$
$1$ $1$ $()$ $1$
$1$ $2$ $(1,2)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.