Properties

Label 1.3_19.6t1.2c2
Dimension 1
Group $C_6$
Conductor $ 3 \cdot 19 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_6$
Conductor:$57= 3 \cdot 19 $
Artin number field: Splitting field of $f= x^{6} - x^{5} - 17 x^{4} - 11 x^{3} + 37 x^{2} + 33 x + 7 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_6$
Parity: Even
Corresponding Dirichlet character: \(\chi_{57}(50,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 30 a + 9 + \left(3 a + 12\right)\cdot 31 + \left(27 a + 24\right)\cdot 31^{2} + \left(20 a + 8\right)\cdot 31^{3} + \left(29 a + 16\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 28 a + 9 + \left(a + 21\right)\cdot 31 + \left(16 a + 6\right)\cdot 31^{2} + \left(9 a + 13\right)\cdot 31^{3} + \left(14 a + 22\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 3 }$ $=$ $ a + 7 + \left(27 a + 21\right)\cdot 31 + \left(3 a + 12\right)\cdot 31^{2} + \left(10 a + 23\right)\cdot 31^{3} + \left(a + 23\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 14 a + 19 + \left(8 a + 3\right)\cdot 31 + \left(21 a + 20\right)\cdot 31^{2} + \left(2 a + 23\right)\cdot 31^{3} + \left(5 a + 21\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 3 a + 3 + \left(29 a + 28\right)\cdot 31 + \left(14 a + 5\right)\cdot 31^{2} + \left(21 a + 16\right)\cdot 31^{3} + \left(16 a + 10\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 17 a + 16 + \left(22 a + 6\right)\cdot 31 + \left(9 a + 23\right)\cdot 31^{2} + \left(28 a + 7\right)\cdot 31^{3} + \left(25 a + 29\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3)(2,5)(4,6)$
$(1,4,5,3,6,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,3)(2,5)(4,6)$$-1$
$1$$3$$(1,5,6)(2,4,3)$$-\zeta_{3} - 1$
$1$$3$$(1,6,5)(2,3,4)$$\zeta_{3}$
$1$$6$$(1,4,5,3,6,2)$$-\zeta_{3}$
$1$$6$$(1,2,6,3,5,4)$$\zeta_{3} + 1$
The blue line marks the conjugacy class containing complex conjugation.