Properties

Label 1.3_17.8t1.1c3
Dimension 1
Group $C_8$
Conductor $ 3 \cdot 17 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_8$
Conductor:$51= 3 \cdot 17 $
Artin number field: Splitting field of $f= x^{8} - x^{7} + 10 x^{6} - 11 x^{5} + 15 x^{4} - 61 x^{3} + 58 x^{2} - 47 x + 103 $ over $\Q$
Size of Galois orbit: 4
Smallest containing permutation representation: $C_8$
Parity: Odd
Corresponding Dirichlet character: \(\chi_{51}(2,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 67 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 1 + 7\cdot 67 + 61\cdot 67^{2} + 65\cdot 67^{3} + 58\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 5 + 10\cdot 67 + 7\cdot 67^{2} + 12\cdot 67^{3} + 11\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 27 + 19\cdot 67 + 22\cdot 67^{3} + 21\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 29 + 64\cdot 67 + 42\cdot 67^{2} + 13\cdot 67^{3} + 24\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 45 + 60\cdot 67^{2} + 34\cdot 67^{3} + 17\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 50 + 38\cdot 67 + 5\cdot 67^{2} + 40\cdot 67^{3} + 17\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 51 + 38\cdot 67 + 35\cdot 67^{3} + 17\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 61 + 21\cdot 67 + 23\cdot 67^{2} + 44\cdot 67^{3} + 32\cdot 67^{4} +O\left(67^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,7)(4,6)(5,8)$
$(1,5,7,6,2,8,3,4)$
$(1,7,2,3)(4,5,6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,2)(3,7)(4,6)(5,8)$$-1$
$1$$4$$(1,7,2,3)(4,5,6,8)$$\zeta_{8}^{2}$
$1$$4$$(1,3,2,7)(4,8,6,5)$$-\zeta_{8}^{2}$
$1$$8$$(1,5,7,6,2,8,3,4)$$-\zeta_{8}$
$1$$8$$(1,6,3,5,2,4,7,8)$$-\zeta_{8}^{3}$
$1$$8$$(1,8,7,4,2,5,3,6)$$\zeta_{8}$
$1$$8$$(1,4,3,8,2,6,7,5)$$\zeta_{8}^{3}$
The blue line marks the conjugacy class containing complex conjugation.