Properties

Label 1.3_13_17.8t1.1c2
Dimension 1
Group $C_8$
Conductor $ 3 \cdot 13 \cdot 17 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_8$
Conductor:$663= 3 \cdot 13 \cdot 17 $
Artin number field: Splitting field of $f= x^{8} - x^{7} + 163 x^{6} - 164 x^{5} + 6135 x^{4} - 11230 x^{3} + 78700 x^{2} - 168806 x + 300901 $ over $\Q$
Size of Galois orbit: 4
Smallest containing permutation representation: $C_8$
Parity: Odd
Corresponding Dirichlet character: \(\chi_{663}(155,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 103 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 39 + 15\cdot 103 + 96\cdot 103^{2} + 79\cdot 103^{3} + 38\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 49 + 74\cdot 103 + 72\cdot 103^{2} + 90\cdot 103^{3} + 41\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 73 + 47\cdot 103 + 20\cdot 103^{2} + 14\cdot 103^{3} + 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 81 + 102\cdot 103 + 32\cdot 103^{2} + 28\cdot 103^{3} + 71\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 90 + 83\cdot 103 + 65\cdot 103^{2} + 54\cdot 103^{3} + 5\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 93 + 19\cdot 103 + 19\cdot 103^{2} + 47\cdot 103^{3} + 74\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 96 + 68\cdot 103 + 72\cdot 103^{2} + 7\cdot 103^{3} + 72\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 98 + 101\cdot 103 + 31\cdot 103^{2} + 89\cdot 103^{3} + 3\cdot 103^{4} +O\left(103^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,4,6,7,3,8,5,2)$
$(1,3)(2,7)(4,8)(5,6)$
$(1,5,3,6)(2,8,7,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,3)(2,7)(4,8)(5,6)$$-1$
$1$$4$$(1,6,3,5)(2,4,7,8)$$-\zeta_{8}^{2}$
$1$$4$$(1,5,3,6)(2,8,7,4)$$\zeta_{8}^{2}$
$1$$8$$(1,4,6,7,3,8,5,2)$$\zeta_{8}^{3}$
$1$$8$$(1,7,5,4,3,2,6,8)$$\zeta_{8}$
$1$$8$$(1,8,6,2,3,4,5,7)$$-\zeta_{8}^{3}$
$1$$8$$(1,2,5,8,3,7,6,4)$$-\zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.