Properties

Label 1.3_13_17.6t1.1c1
Dimension 1
Group $C_6$
Conductor $ 3 \cdot 13 \cdot 17 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_6$
Conductor:$663= 3 \cdot 13 \cdot 17 $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 30 x^{4} - 15 x^{3} + 509 x^{2} - 374 x + 3775 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_6$
Parity: Odd
Corresponding Dirichlet character: \(\chi_{663}(458,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 24 a + 1 + \left(5 a + 2\right)\cdot 31 + \left(30 a + 10\right)\cdot 31^{2} + \left(4 a + 19\right)\cdot 31^{3} + \left(28 a + 7\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 7 a + 5 + \left(25 a + 3\right)\cdot 31 + 27\cdot 31^{2} + \left(26 a + 10\right)\cdot 31^{3} + \left(2 a + 20\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 7 a + 3 + \left(25 a + 4\right)\cdot 31 + 21\cdot 31^{2} + \left(26 a + 21\right)\cdot 31^{3} + \left(2 a + 28\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 24 a + 19 + \left(5 a + 15\right)\cdot 31 + \left(30 a + 3\right)\cdot 31^{2} + 4 a\cdot 31^{3} + 28 a\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 7 a + 18 + \left(25 a + 20\right)\cdot 31 + 2\cdot 31^{2} + \left(26 a + 30\right)\cdot 31^{3} + \left(2 a + 27\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 24 a + 17 + \left(5 a + 16\right)\cdot 31 + \left(30 a + 28\right)\cdot 31^{2} + \left(4 a + 10\right)\cdot 31^{3} + \left(28 a + 8\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3,4,5,6,2)$
$(1,5)(2,4)(3,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,5)(2,4)(3,6)$$-1$
$1$$3$$(1,4,6)(2,3,5)$$\zeta_{3}$
$1$$3$$(1,6,4)(2,5,3)$$-\zeta_{3} - 1$
$1$$6$$(1,3,4,5,6,2)$$\zeta_{3} + 1$
$1$$6$$(1,2,6,5,4,3)$$-\zeta_{3}$
The blue line marks the conjugacy class containing complex conjugation.