Properties

Label 1.3_13.4t1.1c1
Dimension 1
Group $C_4$
Conductor $ 3 \cdot 13 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_4$
Conductor:$39= 3 \cdot 13 $
Artin number field: Splitting field of $f= x^{4} - x^{3} - 11 x^{2} - 9 x + 3 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_4$
Parity: Even
Corresponding Dirichlet character: \(\chi_{39}(5,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 17 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 1 + 13\cdot 17 + 8\cdot 17^{2} + 16\cdot 17^{3} +O\left(17^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 2 + 3\cdot 17 + 11\cdot 17^{2} + 13\cdot 17^{3} + 5\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 4 + 2\cdot 17 + 2\cdot 17^{2} + 9\cdot 17^{3} + 4\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 11 + 15\cdot 17 + 11\cdot 17^{2} + 11\cdot 17^{3} + 5\cdot 17^{4} +O\left(17^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,3)(2,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,3)(2,4)$$-1$
$1$$4$$(1,2,3,4)$$\zeta_{4}$
$1$$4$$(1,4,3,2)$$-\zeta_{4}$
The blue line marks the conjugacy class containing complex conjugation.